MORPHOANATOMY, HISTOCHEMISTRY AND CRYSTALS OF
THE UNDERGROUND SYSTEM OF BACCHARIS NOTOSERGILA
(ASTERACEAE)
MORFOANATOMÍA, HISTOQUÍMICA Y CRISTALES DEL SISTEMA SUBTERRÁNEO DE
BACCHARIS NOTOSERGILA (ASTERACEAE)
Alejandra V. Carbone1, Federico E. Fernández2, Marcelo P. Hernández3
and Ana M. Arambarri4*
SUMMARY
1.Instituto de Fisiología Vegetal (INFIVE), La Plata, Buenos Aires.
2.Forrajicultura y Praticultura, Facultad de Ciencias Agrarias y Forestales (FCAyF), Universidad Nacional de La Plata (UNLP).
3.Sistemática II, Facultad de Ciencias Naturales y Museo, UNLP. 1,3,4. Área de Botánica, FCAyF, UNLP, 60 y 119, C. C. 31 (1900) La Plata, Argentina.
Citar este artículo
C a r b o n e , A . V. , F. E . Fernández, M. P. Hernández
&A. M. Arambarri. 2019. Morphoanatomy, histochemistry and crystals of the underground system of Baccharis notosergila (Asteraceae). Bol. Soc. Argent. Bot. 54:
DOI: http://dx.doi. org/10.31055/1851.2372.v54. n4.24930
Recibido: 17 Julio 2019
Aceptado: 15 Octubre 2019
Publicado: 15 Diciembre 2019
Editora: Ana María Gonzalez
ISSN versión impresa
Background and aims: Baccharis notosergila is presented as a
M&M: The collected material was examined with conventional optical microscopy techniques. Histochemical tests to identify secondary metabolites were performed, and crystals were analyzed by a scanning electron microscope.
Results: The subterranean system found was a xylopodium which has high shoot
Conclusions: The presence of these characteristics on the underground systems could explain the frequency of this species in the floristic from Salado river basin in which alternate periods of high humidity and drought. The belowground bud bank would be important to B. notosergila survival in this area with extreme climatic factors, and its resistance to mechanical and chemical control. Understanding the anatomical features of these plants is one of the steps to appropriate management of this species in the Salado river basin.
KEY WORDS
Buds, inulin, roots, Salado river basin, xylopodium.
RESUMEN
Introducción y objetivos: Baccharis notosergila es una maleza de alta incidencia que reduce la productividad en campos de la Depresión del Salado, Buenos Aires, Argentina. Los objetivos de este trabajo fueron: describir la estructura del sistema subterráneo, el origen de los brotes y localizar las estructuras secretoras y la sustancia de almacenamiento, para comprender las estrategias de adaptación de esta especie, así como su capacidad para resistir el control químico y mecánico.
M&M: El material recolectado fue analizado con técnicas convencionales de microscopía óptica; se realizaron pruebas histoquímicas para identificar los metabolitos secundarios y se analizaron los cristales con microscopio electrónico de barrido.
Resultados: El sistema subterráneo encontrado fue del tipo xilopodio, el cual tiene un alto potencial de formación de brotes. Como sustancias carbonadas de almacenamiento se encontró inulina; no hallándose almidón. En los conductos secretores de las raíces se identificaron resinas y aceites; también se hallaron taninos y cristales de oxalato de calcio en el xilopodio y las raíces.
Conclusiones: La presencia de estas características en los sistemas subterráneos podría explicar la elevada frecuencia de esta especie en la composición florística de la cuenca del río Salado, en la que alternan períodos de alta humedad y sequía. El banco de yemas subterráneas sería importante para la subsistencia de B. notosergila en esta área con condiciones climáticas extremas y también su tolerancia al control químico y mecánico. Comprender las características anatómicas de estas plantas es uno de los pasos para el manejo adecuado de esta especie en la cuenca del río Salado.
PALABRAS CLAVE
Depresión del Salado, inulina, raíces, xilopodio, yemas.
519
Bol. Soc. Argent. Bot. 54 (4) 2019
INTRODUCTION
The Salado river basin situated in Buenos Aires province (Argentina) is a plane with predominance of saline and alkaline soils and a deficient drainage. This area in 80% of its surface is occupied by natural prairies (grassland) principally dedicated to livestock farming (Rodríguez & Jacobo, 2012). Several herbaceous and subshrub species of these prairies have thickened underground systems, frequently rhizomes, exerting a strong competition for water, nutrients and light with the forage value species of the natural prairie, reducing the productivity and receptivity of these environments (Sione et al., 2006). Baccharis notosergila Griseb. (Asteraceae) is a native subshrub aggressive as weed in the Salado river basin (Fig. 1). This species usually enter in dormancy at the end of autumn with senescence of aerial organs, and sprout in the following spring; flowering occurs in summer after a period of vegetative growth in
It is known that many species of Asteraceae have thick underground systems (Cury, 2008;
&
Fig. 1. Parts of Baccharis notosergila respect to the ground level: aerial (aboveground) and subterranean (underground) systems. Scale= 10 cm.
climatic factors. Frequently, after the death of aboveground biomass, there is an increase in the number of species resprouting from the buds located in underground organs, thus confirming the importance of such
520
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
2016). As was mentioned above, B. notosergila showed to be a resistant weed to mechanical and chemical control. The introduction and adoption of new alternatives of weed managements require deepen the knowledge about organs and their structures; also to increase the knowledge about storage and secreted compounds, because these characteristics mean adaptation and resistance to environmental conditions, and control treatments. Therefore, the objectives of the present work were: to analyze the underground system type and its structure; establish the origin of sprouts and the presence of secretory structures, and to test for lipid, resin, tannin, and carbohydrate reserves, and finally, to perform an analysis of crystal types and composition using a scanning electron microscope.
MATERIALS AND METHODS
During the year 2018, in the months of June,
For the anatomical study, samples of six adult plants were fixed in
metachromatic staining was performed using Cresyl violet (0,5%), and also a monochromatic staining was made using alcoholic solution of safranin (80%) (D’Ambrogio, 1986). The sections were then mounted in
For histochemical analysis, inulin was identified directly on freehand
Scanning electron microscope (SEM) study was performed using portions of xylopodium and root. They were taken from fixed material, dehydrated in ethyl alcohol (100º) for 24 h and air dried. Then the samples were affixed on stubs by
521
Bol. Soc. Argent. Bot. 54 (4) 2019
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP).
RESULTS
Baccharis notosergila has an underground system formed by a xylopodium and a thickened taproot (the primary root), with numerous root branches (secondary roots), and adventitious roots originated from the medial and basal part of the xylopodium. The xylopodium is situated at ground level or some centimeters under it. The size and shape of xylopodium varied according to the age [Figs. 1; 2A, B; images 12, 15 (SI)].
Xylopodium. It is a perennial thickened and woody organ with development periods. It has numerous buds distributed along the axis and high resprout capacity (Fig. 2B). The buds are globose and present numerous initial
There are many buds found on the xylopodium that can develop into new stems [Fig. 2B; 3B; image 9 (SI)]. In the lower part (at hypocotyl and taproot level) are also formed more or less thickened adventitious roots [(Fig. 3A, C), images 12 and 14 (SI)].
According our anatomical study a xylopodium of several years old,
is constituted by secondary bark with notable cork (periderm). The secondary phloem presents abundant mechanical tissue, and the parenchyma cells of medullary rays are filled with crystals. Internal to vascular cambium it is the secondary xylem and the pith formed by parenchyma (Fig. 4A, C). Secondary xylem exhibits the growth- rings, meaning the xylopodium development periods (Fig. 4A, D). Tyloses in vessels of the secondary xylem were found with
Root system. The
A taproot of
Roots histochemical tests revealed ducts containing resins and oil droplets (Fig.
522
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
Fig. 2. Subterranean system of Baccharis notosergila. A: Xylopodium and root system. B: Detail of
xylopodium showing three stems developed from yolks, and some buds (asterisks); 1, 2, 3, 4: indicate cross-
sections at stem, hypocotyl and taproot levels. C: An optical microscope view of a bud sectioned exhibiting
several
showing oil drops colored with Oil Red “O” (arrows). Scales= A: 5 cm; B: 2 cm; C, D: 100 µm. Abbreviations=
ar: adventitious root; st: stems; tr: taproot with secondary branches; xy: xylopodium.
523
Bol. Soc. Argent. Bot. 54 (4) 2019
Fig. 3.
The substance stored by roots was fructans of
In the xylopodium and roots, styloid calcium oxalate crystals were found (Fig. 6D). These
styloids showed a tabular aspect with pointed and square ends (i. e., from lateral view they appeared fusiform, and from a frontal view as a table with truncate ends (Fig. 8A). These crystals sometimes appeared disposed in piles (Fig. 8B). A
524
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
Fig. 4. Caulinar xylopodium features of Baccharis notosergila. A: Stem cross section showing external protection, periderm; secondary phloem with big quantity of crystals; secondary xylem with
525
Bol. Soc. Argent. Bot. 54 (4) 2019
Fig. 5. Taproot features of Baccharis notosergila. A: Root tissues,
composed predominantly of the cation calcium and sometimes a small quantity of potassium may also be found (Fig. 8C). Crystals were seen in dilated medullary rays of the phloem, and they are also abundant in the areas near buds formation.
DISCUSSION
Baccharis notosergila showed a woody axis of xylopodium, which originates from the hypocotyl and exhibits caulinar and radicular structure as was found by Hayashi &
On the xylopodium, the primordial bud- leaves presented glandular and
In the xylopodium and roots calcium oxalate crystals filling the vacuole of cells were found. Cury (2008), studied the underground system of seven species of Asteraceae and mentioned only the presence of sclereids with a crystal in the xylopodium of Pterocaulon alopecuroides (Lam.) DC. The presence of calcium oxalate crystals of different types have been found in stems, cladodes, and leaves of Baccharis species (Cortadi et al., 1999; Petenatti et al., 2007; Budel
&Duarte, 2010; Jasinski et al., 2014; Budel et al., 2015; Bobek et al., 2015, 2016). In the subterranean organs, we found styloids similar to those reported by Budel et al. (2015) and Bobek et al. (2015, 2016). Bobek et al. (2016) mentioned that crystal shapes are one diagnostic characteristic for Baccharis species.
Baccharis notosergila presents a high number of multiseriate medullary rays in the roots. According to Metcalfe & Chalk (1989), this
526
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
Fig. 6. Adventitious root features of Baccharis notosergila. A:
527
Bol. Soc. Argent. Bot. 54 (4) 2019
Fig. 7. Histochemical tests of Baccharis notosergila. A: Cross section of a duct containing resins (copper
sulphate test). B: Longitudinal section of a duct showing resins (arrow). C: Another duct with resins inside
and many oil small drops dispersed in the parenchyma (Oil red “O” test). D: Cortical parenchyma tissue
showing spherocrystals of inulin (arrows). Scales=
en: endodermis.
528
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
Fig. 8. Crystals and characteristic spectrum of the elements in parenchyma tissue of secondary phloem of Baccharis notosergila. A, B: Calcium oxalate crystals in xylopodium and root. A: styloids with pointed and truncate ends. B: styloids in piles. C: Characteristic spectrum of calcium and potassium ions. Scales= A, B: 5 µm. Abbreviations= st: styloid; stp: styloids in piles.
trait in roots might be attributed to increase the water transport function more than this reserve accumulation, coincidently inulin was not found in the rays. In secondary and adventitious roots, which grow more or less parallel to soil surface, we observed lignified pith and additionally abundant fibers in the secondary xylem. This root structural change would be mainly due to
physiological causes such as the greater need to support function as suggested by Metcalfe & Chalk (1989).
In the roots, chemical test for starch was negative, whereas was positive for inulin reserve. The inulin was found accumulated in the cortical parenchyma of the roots. It is the most frequent localization according to Hayashi & Appezzato-
529
Bol. Soc. Argent. Bot. 54 (4) 2019
CONCLUSION
The formation of aerial shoot from buds located in underground structures associated to the accumulation of fructans reinforces the importance of a viable underground bud bank for the persistence of this woody subshrub, and the difficulty found to mechanical and chemical control.
AUTHOR CONTRIBUTION
AVC provided the global research ideas and goals, and with FEF, provided of resources. MPH and AMA carried out the research, and AMA prepared the manuscript. All the authors have read the final manuscript and approved its submission.
ACKNOWLEDGEMENTS
We thank the technicians Mario Sánchez and Mariela Theiller of the electron microscope service
BIBLIOGRAPHY
ALONSO, A. A. & S. R. MACHADO. 2007. Morphological and developmental investigations of the underground system of Erythroxylum species from Brazilian cerrado. Aust J Bot 55:
BOBEK, V. B., V. P. DE ALMEIDA, C. B. PEREIRA, G. HEIDEN, M. R. DUARTE, J. M. BUDEL
&T. NAKASHIMA. 2015. Comparative pharmabotanical analysis of Baccharis caprariifolia DC. and B. erioclada DC. From Campos Gerais, Paraná, Southern Brazil. Lat. Amer. J. Pharm. 34:
BOBEK, V. B., G. HEIDEN, C. FREITAS DE OLIVEIRA, V. PAES DE ALMEIDA, J. PADILHA DE PAULA, P. V. FARAGO, T. NAKASHIMA
&J. M. BUDEL. 2016. Comparative analytical micrographs of “vassouras” (Baccharis, Asteraceae). Rev.. Bras. Farmacogn. 26:
BUDEL, J. M. & M. R. DUARTE. 2010. Macro and microscopic characters of the aerial vegetative organs of carqueja: Baccharis usterii Heering. Braz. Arch. Biol. Technol. 53:
530
A. V. Carbone et al. - Baccharis notosergila: Subterranean system
BUDEL, J. M., M. R. DUARTE, P. M. DÖLL- BOSCARDIN, P. V. FARAGO, N. I.
MATZENBACHER, A. SARTORATTO & B. H. L. N. SALES MAIA. 2012. Composition of essential oils and secretory structures of Baccharis anomala, B.megapotamica and B. ochracea. J. Essent. Oil Res. 24:
BUDEL, J. M., J. PADILHA DE PAULA, V. L.
PEREIRA DOS SANTOS, C. R. CAVICHIOLO FRANCO, P. V. FARAGO & M. R. DUARTE. 2015. Pharmacobotanical study of Baccharis pentaptera. Rev. Bras. Farmacogn. 25:
CORTADI, A., O. DI SAPIO, J. MC CARGO, A SCANDIZZI, S. GATTUSO & M. GATTUSO. 1999. Anatomical studies of Baccharis articulata, Baccharis crispa and Baccharis trímera, “carquejas” used in folk medicine. Abbreviation Pharm. Biol. 37:
COSA, M. T., N. DOTTORI, L. STIEFKENS, M. HADID, M. MATESEVACH, N. DELBÓN, P. WIEMER, S.
MACHADO, V. CABRERA, C. COSTA, A. PÉREZ
&A. TRENCHI. 2014. Aplicación de técnicas de histología vegetal a la resolución de diversos problemas. Laboratorio de Morfología Vegetal, Universidad Nacional de Córdoba.
CURY, G. 2008. Sistemas subterráneos de Asteraceae do Cerrado paulista: abordagens anatómica, ecológica
ereproductiva. Tese Doutorado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil, 95 pp.
D’AMBROGIO A. 1986. Manual de técnicas en histología vegetal. Hemisferio Sur, Buenos Aires, Argentina.
M.
&S. M. C. DIETRICH. 1991. The physiological significance of fructan accumulation in Asteraceae from the Cerrado. Cienc. Cult. 43:
GOMES DE MORAES, M., M. A. MACHADO DE CARVALHO, A. C. FRANCO, C. J. POLLOCK &
R. DE CÁSSIA LEONE
GURR, E. 1971. Synthetic dyes in biology, medicine and chemistry. Academic Press, London.
HAYASHI, A. H. & B.
HERBICIDE RESISTANT PLANTS COMMITTEE. 1998. “Herbicide resistance” and “herbicide tolerance” defined. Weed Technol. 12: 789.
JASINSKI, V. C. G., R. Z. DA SILVA, R. PONTAROLO, J. M. BUDEL & F. R. CAMPOS. 2014. Morpho- anatomical characteristics of Baccharis glaziovii in support of its pharmacobotany. Rev. Bras. Farmacogn. 24:
JOHANSEN, D. A. 1940. Plant microtechnique.
LUQUE, R., H. C. SOUSA & J. E. KRAUS. 1996. Métodos de coloração de Roeser (1972)
METCALFE, C. R. & L. CHALK. 1989. Anatomy of the Dicotyledons. Clarendon Press, Oxford.
ORTHEN, B. 2001. Sprouting of the fructan- and starch- storing geophyte Lachenalia minima: effects on carbohydrate and water content within the bulbs. Physiol. Plant. 113: 308– 314.
https//doi:
CIFUENTE, J. C. GIANELLO, O. S. GIORDANO, C. E. TONN & L. A. DEL VITTO. 2007. Medicamentos herbarios en el
PURICELLI, E. & D. TUESCA. 2005. Efecto del sistema de labranza sobre la dinámica de la comunidad de malezas en trigo y en barbechos de secuencias de cultivos resistentes a glifosato. Agriscientia 22:
RODRIGUEZ, A & E. JACOBO. 2012. Manejo de pastizales naturales para una ganadería sustentable en la Pampa Deprimida. Buenas prácticas para una ganadería sustentable de pastizal. Kit de extensión para las pampas y campos. FAUBA Editorial.
531
Bol. Soc. Argent. Bot. 54 (4) 2019
RUZIN, S. E. 1999. Plant microtechnique and microscopy. University Press, Oxford.
SIONE, S., R. SABATTINI, S. LEDESMA,A. F. DORSCH
&C. FORTINI. 2006. Notas: Caracterización florística y estructural del estrato arbustivo de un monte en pastoreo (Las Garzas, Entre Ríos). Revista
Científica Agropecuaria 10:
TERTULIANO, M. F. & R. C. L. FIGUEIREDO- RIBEIRO. 1993. Distribution of fructose polymers in herbaceous species of Asteraceae from the cerrado. New Phytol. 123:
URDAMPILLETA, J. I. 2019. Métodos de control poblacional de Baccharis notosergila Griseb.:
maleza arbustiva de alta incidencia en la zona de la Pampa Deprimida. Tesis de grado, modalidad: intervención profesional, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. Dirección: A. V. Carbone. Codirección: F. E. Fernández. Repositorio Institucional de la UNLP. Disponible en: http://sedici.unlp.edu.ar/ handle/10915/74210
YASUÉ, T. 1969. Histochemical identification of calcium oxalate. Acta Histochem. Cytochem. 2:
ZARLAVSKY, G. E. (ed.). 2014. Histología vegetal: Técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires.
532