Field obServationS on rare or overlooKed  
dinoFlagellateS From the argentine Sea  
obServaCioneS de CamPo Sobre dinoFlageladoS raroS o  
deSConoCidoS en el mar argentino  
1,2  
Elena Fabro * & Gastón O. Almandoz  
Summary  
Background and aims: Planktonic dinoflagellates have a great ecological significance  
in marine environments. While some dinoflagellate species commonly reach bloom  
concentrations and are thus conspicuous components of marine phytoplankton, others  
occur in very low abundances which make them difficult to detect in field studies.  
Here we analyzed dinoflagellate composition and abundance in five oceanographic  
expeditions carried out in continental shelf and slope waters of the Argentine Sea.  
M&M: Plankton abundance was estimated by the Utermöhl method, using inverted  
microscopy, whereas further optical and scanning electron microscopy was applied for  
the identification of dinoflagellate species.  
1
. División Ficología, Facultad  
de Ciencias Naturales y Museo,  
Universidad Nacional de La Plata.  
Paseo del Bosque s/n (B1900FWA),  
La Plata, Argentina.  
2
.
Consejo Nacional de  
Investigaciones Científicas  
Técnicas (CONICET). Godoy Cruz  
290 (C1425FQB), Buenos Aires,  
Argentina.  
y
2
Results: We focused on the occurrence of seven dinoflagellates that have been  
previously poorly documented or overlooked in marine environments worldwide:  
Dinophysis microstrigiliformis; Gyrodinium sp.; Karlodinium elegans; Oxytoxum  
laticeps; Peridiniella danica; Peridiniella globosa and Prorocentrum nux. The latest  
and K. elegans are observed for the first time in field conditions after their original  
descriptions based on cell cultures. While most species were detected in low or  
moderate abundances, P. nux, which is the smallest Prorocentrum species, reached  
*fabroelena@yahoo.com.ar  
Citar este artículo  
FABRO, E. & G. O. ALMANDOZ.  
021. Field observations on rare  
2
-1  
2,000 cells L in slope waters. Very small Gyrodinium cells (11.5 µm long; 8.7 µm  
8
or overlooked dinoflagellates from  
the Argentine Sea. Bol. Soc. Argent.  
Bot. 56: 123-140.  
wide) with a distribution restricted to slope waters during spring, were not possible to  
be accurately assigned to a species.  
Conclusions: This study contributes to the understanding of dinoflagellate diversity in  
the Argentine Sea and the worldwide distribution of little known species.  
Key WordS  
Biogeography, dinoflagellates, diversity, Karlodinium elegans, Prorocentrum nux, South  
Atlantic Ocean.  
reSumen  
Introducción y objetivos: Los dinoflagelados planctónicos son de gran relevancia en  
los ecosistemas marinos. Mientras que algunas especies suelen forman floraciones  
y ser componentes conspicuos del fitoplancton, otras se encuentran en abundancias  
muy bajas, lo cual hace difícil su detección. Aquí analizamos la composición y  
abundancia de dinoflagelados en cinco expediciones oceanográficas realizadas en  
aguas de la plataforma continental y del talud del Mar Argentino.  
M&M: La abundancia se estimó con microscopio invertido (método Utermöhl) y se utilizó  
microscopía óptica y electrónica de barrido para la identificación específica.  
Resultados: Nos enfocamos en la ocurrencia de siete dinoflagelados que previamente  
han sido poco documentados en ambientes marinos de todo el mundo: Dinophysis  
microstrigiliformis; Gyrodinium sp.; Karlodinium elegans; Oxytoxum laticeps;  
Peridiniella danica; Peridiniella globosa y Prorocentrum nux. Esta última especie y K.  
elegans se observan por primera vez en el campo desde su descripción basada en  
cultivos celulares. Si bien la mayoría de las especies se detectaron en abundancias  
bajas o moderadas, P. nux, el Prorocentrum más pequeño, alcanzó 82.000 células  
-1  
L en aguas del talud. Células pequeñas de Gyrodinium sp. (11,5 µm de largo y 8,7  
µm de ancho), con un una distribución restringida a las aguas del talud durante la  
primavera, no pudieron ser asignadas con precisión a nivel específico.  
Conclusiones:Esteestudiocontribuyealconocimientodeladiversidaddedinoflagelados  
en el Mar Argentino y la distribución mundial de especies poco conocidas.  
Recibido: 15 Dic 2020  
Aceptado: 17 May 2021  
Publicado impreso: 30 Jun 2021  
PalabraS Clave  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
Biogeografía, dinoflagelados, diversidad, Karlodinium elegans, Océano Atlántico Sur,  
Prorocentrum nux.  
123  
Bol. Soc. Argent. Bot. 56 (2) 2021  
introduCtion  
2016) suggest that dinoflagellate diversity in the  
Argentine Sea is higher than previously known.  
While some dinoflagellate species commonly  
Planktonic microalgae comprise an essential  
biotic component of the world oceans. Among reach bloom concentrations and are thus  
microalgae, dinoflagellates are of great ecological conspicuous components of marine phytoplankton,  
significance as they contribute to primary others occur in very low abundances which make  
production and are determinant in trophic webs, them difficult to detect in field studies (Steidinger &  
representing a strong influence in biogeochemical Tangen, 1997). Within this low-abundance species,  
cycles and biotic interactions (Graham & Wilcox, small thecate and unarmored dinoflagellates are  
2
000). Moreover, dinoflagellates include the less studied in field conditions, as most of the  
largest number of toxigenic species among marine research is directed to bigger armoured species  
phytoplankton, which can produce harmful blooms with easily preserved morphological features (De  
with negative impacts to human health and marine Salas et al., 2008). In order to increase knowledge  
life and generate economic losses to fisheries, on dinoflagellate diversity in the Argentine Sea,  
aquaculture and exploitation of natural mussel’s we focused on the occurrence of small and rare  
beds (Lassus et al., 2016).  
dinoflagellates previously overlooked or poorly  
Dinoflagellates are ubiquitous in marine documented, by the analysis of plankton samples  
environments; comprising heterotrophic, obtained in five oceanographic expeditions in  
autotrophic and mixotrophic species and also different seasons. Based on detailed light and  
ecto- and endoparasitic species and symbionts electron microscopy observations, we found cells  
(Hackett et al., 2004). According to the presence or of seven dinoflagellates that are poorly documented  
absence of cellulose inside the amphiesmal vesicles or found for the first time in the Southeast Atlantic  
they are divided in two big groups: thecate and Ocean and have also been rarely mentioned from  
unarmored dinoflagellates. Within the thecate group marine environments worldwide. For each taxa we  
taxonomical classification is based on the number, provide a detailed morphological characterization  
position and shape of the thecal plates, while in the and describe their distribution patterns, compared  
unarmored group cellular shape, ultra-structural with previous observations.  
characters of the flagellar apparatus and shape of  
the apical groove are usually used to differentiate  
genera (Daugbjerg et al., 2000). With the advent of materialS and methodS  
molecular technics in the last decades, phylogeny  
and morphological traits for classification of Field Sampling  
some unarmored dinoflagellates were reconsidered  
Daugbjerg et al., 2000).  
The continental shelf and slope waters of  
the Argentine Sea were sampled during five  
(
An important contribution to knowledge about oceanographic expeditions (Fig. 1). Expedition 1  
the diversity and distribution of dinoflagellates, not (E1) was conducted in austral autumn on board  
only in the SouthAtlantic Ocean but also worldwide, the R/V Puerto Deseado from March 30th to April  
comes from the copious work done by E. Balech 14th, 2012. A total of 47 stations were sampled  
(e.g. Balech, 1976, 1988, 1995, 2002). More recent between ≈38 and 56 ºS. The second expedition  
studies have continued this line of research in the (E2) was carried out in late austral summer on  
Argentine Sea, mainly covering coastal areas or the R/V Bernardo Houssay from March 11th to  
toxigenic species (e.g. Akselman 1985, 1986, 1987; March 22nd, 2013, with 24 sampling stations  
Akselman & Negri, 2012; Akselman et al., 2015; located between ≈39 and 43 ºS. This cruise was  
Fabro et al., 2015; Antacli et al., 2018; Tillmann divided in two legs K1 and K2, which comprise 8  
et al., 2019; Sunesen et al., 2020a). However, the and 16 sampling stations, respectively. The third  
recent description of new dinoflagellate species expedition (E3) was conducted in austral spring  
(Tillmann & Akselman, 2016; Boutrup et al., 2017; aboard the R/V Puerto Deseado, from October  
Tillmann, 2018; Tillmann et al. 2018; Sunesen et 26th to November 9th, 2013, with 47 sampling  
al., 2020b) and the finding of new records (e.g. stations located between ≈40 and 47 ºS. The fourth  
Fabro et al., 2016, 2017, 2019; Tillmann et al., expedition (E4) was conducted on board the  
124  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
Fig. 1. Letters and numbers on maps indicate various sampling sites. Expeditions across the Argentine Sea.  
E1: autumn; E2: late summer; E3: spring; E4 and E5: summer.  
Canadian R/V Coriolis II in austral summer from sedimentation chamber prior to cell counting  
3
0th January to 15th February 2014, in a transect under an inverted microscope (Leica DMIL LED).  
consisting of 5 sampling stations from internal The organisms were counted in two stages; at  
shelf waters of San Jorge Gulf to slope waters least 400 cells of the dominant taxa were counted  
in front of the gulf. The last expedition (E5) was in random fields or in transects of the chamber to  
carried out in austral summer from January 6th to estimate general plankton composition, whereas  
January 12th, 2016, with seven sampling stations the whole chamber bottom was scanned to count  
located between ≈38 and 55°S. The conductivity sparse species.  
(
salinity)/temperature/depth (CTD) data were  
Further morphological examination of  
available throughout all expeditions, except from selected samples was conducted with a phase  
leg K2 of expedition E2, during which no CTD contrast/differential interference contrast optical  
measurements were performed. During this leg, microscope (LM) Leica DM2500 equipped with  
only surface water temperature was measured with a DFC420C camera, and with scanning electron  
a multiparameter probe TOA-DKK Model WQC.  
microscopy (SEM): Jeol JSM-6360 LV SEM  
During all expeditions, Niskin bottle samples (JEOL, Tokyo, Japan), Carl Zeiss NTS SUPRA  
were taken from surface water (~4 m depth). 40 (Zeiss, Oberkochen, Germany) and FEI Quanta  
Aliquots of 250 mL were fixed with acidic FEG 200 (FEI, Eindhoven, the Netherlands). Bottle  
Lugol’s iodine solution for quantitative analyses. and net sample aliquots were filtered through 0.2  
Plankton net samples were additionally collected µm polyamide filters and 3 µm polycarbonate  
for qualitative morphological analysis by vertical filters for SEM analyses. The material on the  
net tows through the upper 20 m of the water filters was dehydrated by serial ethanol treatment  
column with a 20 µm-mesh Nitex net and fixed and final critical point dehydration (BAL-TEC  
with acidic Lugol’s iodine solution.  
CPD-30, Balzers, Liechtenstein). Specimens  
were sputter-coated with Au with a sputter fine  
coat Jeol JFC 1.100 (Jeol, Tokyo, Japan) for  
Plankton analysis  
Nano- (≈5-20 μm) and microplankton (20-200 samples observed with Jeol JSM-6360 LV SEM  
μm) abundance was estimated using the Utermöhl or with gold-palladium (Cressington Scientific  
(
(
1958) inverted microscope method. Subsamples Instruments, Watford, UK and Emscope SC500;  
50 mL) from the mixed water obtained by Niskin Ashford, UK) for samples observed with Carl  
bottles were left to settle for 24 h in a composite Zeiss NTS SUPRA 40 and FEI Quanta FEG 200.  
125  
Bol. Soc. Argent. Bot. 56 (2) 2021  
reSultS and diSCuSSion  
But the species has been found in the Southern  
Atlantic in some occasions. Haraguchi & Odebrecht  
Dinophysis microstrigiliformis Abé, Publ. Seto (2010) found one cell in internal shelf waters from  
Mar. Biol. Lab. 15. 1967, Fig. 2.  
Southern Brazil (≈34 °S, 51 °W) during winter. In  
the Argentine Sea, records of the species correspond  
to one cell found in external shelf waters in front of  
Balech 1988, p. 230, lám. 8. Figs. 12-13.  
Cells with elongated shape, longer than wide. Buenos Aires Province (37 °S) and a few more thecae  
The left sulcal list (LSL) is long, extending until the at 41 °S (Balech et al., 1984; Balech, 1988). In our  
posterior end of the cell. The three ribs from the LSL study, D. microstrigiliformis was only detected in  
are thin, R3 is shorter than R2 and the distance between net tow samples and it was confined to the southern  
R2 and R3 is larger than between R1 and R2 (Fig. 2A). Argentine Sea (≈55 °S) during autumn (Table 1),  
The anterior cingular list (ACL) is smooth and conic which supports its distribution in polar and sub-polar  
(
Fig. 2B). Dinophysis species are mixotrophic with waters.  
cryptophycean-like plastids (Schnepf & Elbräichter,  
988). Dimensions: length average 36.4 µm ± 3.5,  
width average 21.3 µm ± 2.5 (n = 8).  
1
Observations. This species was described  
based on one cell from Japan (Abé, 1967). The  
author stated that it may be an aberrant form of  
Distribution and habitat. D. microstrigiliformis D. lapidistrigiliformis, with smaller and more  
is a very rare species, which has been mentioned elongated theca, and longer LSL. Balech (1988)  
only a few times worldwide and always in very found also one cell from the northern Argentinean  
low abundances. According to Ivin et al. (2014) is Sea (37 °S) and remarked that D. microstrigiliformis  
probably a neritic and boreal species recorded near the is very similar to D. sacculus, but with a longer LSL  
coast of northern Japan and in Avacha Bay, Russia. and a regular and convex dorsal edge. Dinophysis  
Fig. 2. LM images of Dinophysis microstrigiliformis. A-B: lateral views; note that the LSL is large (ends  
almost at the hypothecal antapex), R3 is shorter than R2 and the distance between R2 and R3 is larger than  
between R1 and R2. Abbreviations= LSL: left sulcal list. ACL: anterior cingular list. R: sulcal list rib. Scale  
bars: 10 µm.  
126  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
Table 1. Summary of the occurrence, abundance, and physical conditions in which the reported  
dinoflagellate taxa were found. n/d: not detected. M : median. Relative contribution: abundance  
e
percentage of the analyzed taxa with respect to the total abundance of phytoplankton.  
Expedition and  
station  
Relative  
Taxon  
Abundance Temperature Salinity Total Phytoplankton  
contribution  
-1  
-1  
(cells L )  
(cells L  
)
(°C)  
(psu)  
(%)  
Dinophysis  
microstrigiliformis  
113,500; 1,946,500;  
969,400  
E1: C20, I9, I22  
E3: 5, 42  
n/d  
8.5  
32.8; 33.3  
-
Gyrodinium sp.  
4,900; 6,500  
,600;  
8.0; 8.3  
8.0; 9.4  
33.7; 33.8 2,750,900; 3,253,300  
0.2; 0.1  
1
1
Karlodinium elegans E3: 5, 43  
E1: I46, C16, I11,  
33.7  
2,750,900; 3,427,590  
0.05; 0.4  
4,600  
I13, I14, I15  
E2: 3K2  
4
0-440  
5.4-17.2  
32.6-34.2  
48,880-4,139,105  
0.001-0.4  
Oxytoxum laticeps  
E3: 15, 43  
E4: T1, T2, T3  
E5: 7  
(
M =100)  
(M =8.5)  
(M =33.7)  
(M =541,990)  
(M =0.03)  
e
e
e
e
e
E1: C16,C21,I12,  
I13, I14, I15, I48,  
I49  
E2: 18K1, 21K2  
E3: 1, 2, 3, 5, 6,  
2
0-9,000  
7.9-16.3  
33.2-33.8  
74,760-24,050,740 0.00007-0.54  
Peridiniella spp.  
7, 8, 10-16, 20,  
27, 30, 31, 37, 38,  
41-44, 47, 48  
(M =220)  
(M =13.8)  
(M =33.4)  
(M =1,442,938)  
(M =0.02)  
e
e
e
e
e
E4: T2, T3  
E5: 2, 4  
Prorocentrum nux E2: 10K2  
82  
16.2  
-
342,900  
27  
microstrigiliformis is considered as a currently conical (Fig. 3C). The apical groove is elliptical  
accepted taxonomic entity (Guiry & Guiry, 2019). and bisected into two equal parts by a central line  
However, the morphological similarity with D. (Fig. 3C). Cells are ornamented with longitudinal  
lapidistrigiliformis and D. sacculus might justify striations, with the same number of striae in the epi-  
a taxonomic revision. In this sense, Reguera and and hypocone, about 12 in ventral view. The sulcus  
González-Gil (2001) suggested that small and is straight, narrow, well defined, and extends into  
dimorphic cells of D. sacculus mentioned by the epicone. On the hypocone, the sulcus is well  
Bardouil et al. (1991) probably corresponds to defined and deep, broadening toward the antapex.  
D. microstrigiliformis. Likewise, Haraguchi & The cingulum is not superposed and only slightly  
Odebrecht (2010) stated that D. lapidistrigiliformis displaced, about 1/10 of the total cell length. The  
may be a stage in the life cycle of D. fortii.  
genus Gyrodinium contains only heterotrophic  
species (Daugbjerg et al. 2000). Dimensions: length  
average 11.5 µm ± 2.0, width average 8.7 µm ± 1.9  
Gyrodinium sp. Kofoid & Swezy, 1921. Fig. 3.  
(n = 20).  
Ovoid to spindle cell shape, slightly  
dorsoventrally compressed. The epi- and hypocone  
Distribution and habitat. In the Argentine Sea,  
are similar in size (Fig. 3A-C). The apex is rounded the genus Gyrodinium is mainly represented by  
whereas the antapex can be rounded (Fig. 3B) or G. fusus, a big species (≈80 µm long) frequently  
127  
Bol. Soc. Argent. Bot. 56 (2) 2021  
Fig. 3. SEM images of Gyrodinium sp. A: lateral view; note the faint stria in the hyposome among pairs of  
prominent striae (arrowheads). B-C: ventral views. Scale bars: 5 µm.  
recorded in shelf waters from 36 to 39 °S, including described as Gyrodinium, only G. helveticum, G.  
estuarine areas (Akselman, 1985; Barría de Cao & rubrum, G. spirale, G. fusiforme, G. moestrupii  
Piccolo, 2008). By contrast, the small Gyrodinium and G. jinhaense (Takano & Horiguchi, 2004; Yoo  
sp. cells found in this study were mainly observed et al., 2012; Jang et al., 2019), were assigned to  
in high salinity slope waters (St. 5 and 42 from E3, Gyrodinium sensu Daugbjerg et al. (2000). The cells  
Table 1). In those samples, Gyrodinium sp.-like analyzed in this study showed an elliptical apical  
3
3
cells densities were 6.5 x10 and 4.9 x10 cells groove and longitudinal striations, which agrees  
-1  
L , respectively (Table 1). At both stations, total with the above mentioned Gyrodinium definition,  
6
-1  
plankton abundance was around 3 x10 cells L but which has also been supported by phylogenetic  
species composition varied considerably: at station analysis (Takano & Horiguchi, 2004). Gyrodinium  
5
diatoms were the dominant group, while at station sp. cells found in this study resemble, in general  
4
2 a bloom of the dinoflagellate Prorocentrum shape and size (17 µm length, 12 µm wide), the  
cordatum was observed.  
species G. carteretensis described by Campbell  
1973). However, no striation is mentioned in  
(
Observations. The genus Gyrodinium was the original description of G. carteretensis and  
described by Kofoid & Swezy (1921) to comprise the cingular displacement is bigger than in our  
unarmored dinoflagellates with a descent cingulum specimens (1/3 vs. 1/10 of the total cell length).  
displaced by more than one-fifth of the total body Moreover, in the original description is established  
length, in contrast to Gymnodinium which was that cells present chloroplast, so this species does  
defined by a cingulum displacement less than one- not agreed with the Gyrodinium definition by  
fifth of the cell length. More recently, Daugbjerg Daugbjerg et al. (2000). The recently described  
et al. (2000) proposed the apical groove system Gyrodinium jinhaense (Jang et al., 2019) is similar  
as a more useful character to distinguish these in size to the cells found in our study, especially  
genera, as cingular displacement varies even within considering G. jinhaense cells starved for 2 days  
clonal species (e.g., Takano & Horiguchi, 2004). (13-26 µm long, and 7-12 µm wide). However, G.  
Consequently, the authors redefined Gyrodinium to jinhaense contour is more slender, the cingulum is  
contain exclusively heterotrophic species with an displaced about one quarter of the cell length and the  
elliptical apical groove and longitudinal striations posterior sulcal area is widened toward the antapex,  
in the amphiesma surface, while Gymnodinium forming a slightly S-shaped line. Moreover, the  
species have a horseshoe-shaped apical groove and cell surface in G. jinhaense is ornamented with  
no striations. From the about 100 species originally 16 longitudinal striations in ventral view; while  
128  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
in Gyrodinium sp. there are no more than 12. In  
Distribution and habitat. Karlodinium elegans  
one of our pictures (lateral view) one faint stria is was recently described based on two clonal cultures  
present in the hyposome among pairs of prominent (PTB601 and PTB602) obtained from samples  
striae (Fig. 3A, arrowheads), thus resembling the collected during a dinoflagellate bloom in Pingtan  
species G. heterostriatum (sensu Gómez et al., coastal area, Fujian, SE China. Our SEM analyses  
2
020). However, cells in this study are considerably revealed the presence of K. elegans in bottle samples  
smaller than cells from G. heterostriatum; despite at stations 5 and 43 from E3, which correspond to  
this species has a very wide size range (30-70 µm relatively cold (8-9.4 °C) slope waters at ≈40 and  
long; 25-60 µm wide). Moreover Gyrodinium sp. 45 °S. In these samples, Karlodinium-like cells  
3
3
-1  
cells have a lower number of striae in the hypocone densities were 1.6 x10 and 14.6 x10 cells L  
in ventral view (12 or less vs. about 25) and finally respectively (Table 1); total plankton abundances  
6
6
-1  
in G. heterostriatum the episome is smaller than were 2.7 x10 and 3.4 x10 cells L . Both samples  
the hyposome while in our species both are almost were dominated by diatoms, mainly Hemiaulus sp.  
equal in size. Considering the above mentioned and also Thalassiossira sp. at station 5.  
morphological and size differences compared to  
Little is known about the occurrence of  
other similar Gyrodinium species, the cells observed Karlodinium species, or the family Kareniaceae  
in our study could not be assigned to species level. in general (De Salas et al., 2008 and references  
Additional molecular and morphological analyses therein). Even though Kareniaceae representatives  
are needed for a reliable identification.  
and other unarmored dinoflagellates may be a  
dominant component of the dinoflagellate flora in  
Karlodinium elegans Cen, Lu & Huang. J. Antarctic (Gast et al., 2006, 2007; Mascioni et al.,  
Oceanol. Limnol. 39: 245. 2021. Fig. 4.  
2019) and Arctic waters (Luo et al., 2011), they  
are widely unrecognized in field surveys due to the  
Ovoid cells with pointy apex, the epicone is potential for misidentification when applying only  
conical and displays rows of parallel furrows routine morphological analysis. For this reason, it  
that are twisted to the left side in relation to is important to perform more deep morphological  
the cell longitudinal axis. Each epicone furrow or molecular studies of this group, especially  
carries rows of rounded structures ending in considering that several species in the lineage are  
small pores (micro-processes sensu Paulmier et known to be ichthyotoxic (Bergholtz et al., 2005).  
al., 1995; knobs sensu Cen et al., 2021) (Fig.  
4
A, B). The hypocone is rounded and its surface  
Observations. The family Kareniaceae comprises  
is ornamented with quadrilateral pits formed by three genera, i.e. Karlodinium, Karenia and  
longitudinal and horizontal stripes (Fig. 4C). Takayama, which share plastids with fucoxanthin  
The cingulum is displaced; its anterior side is and its derivatives as the major accessory pigments  
delineated from the epicone by a list; below the (De Salas et al., 2003; Benico et al., 2019). The  
cingulum the surface displays two parallel rows genus Takayama possess a sigmoid apical groove  
of knobs (Fig. 4C, arrows). The sulcus invades (De Salas et al., 2003), while in Karlodinium  
slightly the epicone as a finger-like protrusion and Karenia the groove is straight; although  
(
Fig. 4A, arrowhead). The apical groove begins Karlodinium differs from Karenia by the presence  
ventrally, above the sulcus, is directed obliquely of a ventral pore at the left side of the apical groove  
to the apex and extends to the middle region of (Daugbjerg et al., 2000). The general appearance  
the dorsal epicone (Fig. 4B, double arrowhead). and main morphological features (e.g. long slit-like  
The ventral pore is a thin and long slit located “ventral pore”, longitudinal striations curving to the  
far from the apical groove at the left side of left side on the epicone, the apical groove extending  
the sulcal region (Fig. 4D, triangle; Fig. 4E). to the middle region of the dorsal epicone, and a  
This is an autotrophic species with several very special and unusual surface ornamentation  
yellowish-brown chloroplasts distributed in the on the hypocone) of Karlodinium cells analyzed  
cell periphery (Cen et al., 2021). Dimensions: in this work were identical to that reported in  
length average 14.9 µm ± 2.7, width average 11.1 the original description of K. elegans. Regarding  
µm ± 2.0 (n = 24).  
cells size, our specimens were a little smaller than  
129  
Bol. Soc. Argent. Bot. 56 (2) 2021  
Fig. 4. SEM images of Karlodinium elegans. A: ventral view, note how the sulcus invades the epicone as  
a finger-like protrusion (arrowhead). B: dorsal view, note the apical groove ending in the dorsal region of  
the epicone (double arrowhead). C: antapical view, note the list in the anterior side of the cingulum, the  
ornamentation of longitudinal and horizontal stripes forming quadrilateral pits in the hypocone and the two  
rows of knobs in the upper hypocone and in the epicone striation (arrows). D: latero-ventral view, note that  
the ventral pore is a thin and long slit (triangle). E: detail of D showing the ventral slit. Scale bars: 5 µm.  
130  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
those described by Cen et al. (2021), i.e. 19-27  
µm long, 15-23 µm wide. Morphologically two  
species of Karlodinium are similar to K elegans:  
K. corrugatum and K. gentenii. All of them show  
parallel micro-processes rows below the cingulum.  
Particularly, K. corrugatum differs from K. elegans  
by presenting parallel and not twisted furrows in the  
epicone and K. gentenii has a ventral pore next the  
apical grove instead of a long slit (De Salas et al.  
2
008; Nézan et al., 2014). According to Nézan et al.  
(2014) a mixed fixation with Lugol’s solution and  
glutaraldehyde allows to see fine details of the cell  
surface by removing the membranous material or  
mucilage that covers the cell. Likewise, Cen et al.  
(2021) established that the double fixation revealed  
a much clearer cell surface. Although cells analyzed  
in our study were fixed only with Lugol’s solution,  
the main morphological features mentioned above  
could be observed. Unfortunately, the lack of  
samples preserved with other fixatives such as  
glutaraldehyde or osmium tetroxide did not allow  
performing a more detail examination of other key  
morphological features as the position and shape of  
the cell organelles.  
Fig. 5. LM (A-B) and SEM (C-D) images of  
Oxytoxum laticeps. C: dorsal view. Note the  
longitudinal ridges on the plates. D: ventral view.  
Oxytoxum laticeps Schiller 1937, Fig. 5.  
Burns & Mitchell 1982, pp. 72-73, figs. 5-11; Note the small sulcal wing covering the flagellar  
Gómez et al. 2008, p. 28, fig. 35.  
pores. Scale bars: 10 µm.  
The epitheca represents 20-26 % of the total  
cell length, shows a domed shape, without apical  
spine, and it is smooth with occasional small pores  
Distribution and habitat. The species of the  
arranged in random orientation (Fig. 5A-D). The family Oxytoxaceae usually occur in low densities  
hypotheca is cone-shaped, it is larger and wider than in the open ocean, and the smaller ones are rarely  
the epitheca, with convex sides which taper down to retained in net samples (Gómez, 2018). However, O.  
the antapex, ending in a pointy extension (Fig. 5A- laticeps is commonly found in New Zealand coastal  
D). The cingulum is wide, deep, slightly displaced waters (Burns & Mitchell, 1982), and densities up  
5
-1  
and presents well developed lists (Fig. 5C). The to 2.6 x10 cells L have been observed in Crozet  
sulcal plate extends slightly into the hypotheca and Basin (Indian Ocean) (Kopczyńska & Fiala, 2003).  
a small sulcal wing covers the flagellar pores. (Fig. O. laticeps was described from the Mediterranean  
5
D). There is also a small ribbed list on the ventral Sea and it was listed in the north, central equatorial,  
and dorsal antapical end of the hypotheca (Fig. tropical and southeast Pacific (Hasle 1960; Venrick,  
C, D). The hypothecal surface is covered with 1982; Iriarte & Fryxell, 1995; Gómez et al., 2008),  
5
microtubular rods (sensu Burns & Mitchell, 1982) in Canary Islands (northeast Atlantic) (Ojeda, 1996)  
arranged in rows from the antapex to the cingulum. and in the Caribbean Sea (Pérez-Castresana et al.,  
The apical end of the tube is projected beyond 2014). Our finding represents the first record of O.  
the thecal plane and ends in a pore (Fig. 5C, D). laticeps for the southwest Atlantic Ocean, although  
It is an autotrophic species (Gómez et al., 2016). Balech (1988) found one cell of the similar species  
Dimensions: length average 16.7 µm ± 1.4, width O. mediterraneum at northeast Argentine Sea.  
average 12.4 µm ± 1.8 (n = 20).  
O. laticeps was found in bottle samples during  
131  
Bol. Soc. Argent. Bot. 56 (2) 2021  
all expeditions but in low abundances and in a the identity of O. laticeps remains unclear, but both  
few stations (Table 1). Maximum cell densities O mediterraneum and O. laticeps are considered as  
-1  
around 400 cells L ) were detected during both accepted names. Cell length measurements from  
(
summer expeditions in slope waters at the southern our specimens were in the range mentioned by  
sampling area (≈46-55 °S), where total planktonic Burns & Mitchell (1982) (15-25 µm) and by Dodge  
6
-1  
abundances of ≈1.3 x10 cells L were primarily & Saunders (1985) (15-20 µm), but were smaller  
represented by blooms of the diatom genus Pseudo- than those mentioned in Gómez et al. (2008) (30  
nitzschia (St 7 from E5) and small (<5 µm) µm). The surface morphological characteristics of  
unidentified phytoflagellates (St. T2 from E4).  
the hypotheca agreed with that mentioned by Burns  
and Mitchell (1982) for cells with persistent outer  
Observations. Oxytoxum and Corythodinium are wall, characterized by a system of microtubular  
the only two genera within the family Oxytoxaceae, rods arranged in slanting rows from the antapex to  
which form their own clade within the dinokaryotic the girdle with a microtubule that ends in a small  
dinoflagellates according to molecular data (Gómez pore. Another morphologically similar species is  
et al., 2016). Both genera are morphologically Oxytoxum stropholatum (Dodge & Saunders, 1995)  
similar but can be distinguish by the position of the which was placed into Corythodinium by Gomez  
cingulum, always anterior in Oxytoxum and median (2018). Our specimens share with C. stropholatum  
or anterior in Corythodinium, and by the larger the presence of a sulcal wing covering the flagellar  
and broader epitheca in Corythodinium (Taylor, pores, but differed in general cell size (24-25  
1
976). Although some species possess intermediate µm long; 14-17 µm wide according to Dodge &  
characteristics between both genera; molecular data Saunders, 1995) and in the shape of the epitheca,  
support the generic separation (Gómez et al., 2016). which is flattened and only slightly narrower  
Within the genus Oxytoxum, Dodge and Saunders than the hypotheca in C. stropholatum, while  
(1985) designated O. laticeps as the type species of the cells analyzed in this study present a domed  
Section Excavatum (II), which comprises species shaped epitheca which is sharply narrower than the  
with a reduced and domed epitheca and sulcus hypotheca.  
deeply excavated and partly covered by a large  
list composed of extensions of Sd and 6’’ plates Peridiniella danica (Paulsen) Okolodkov &  
and by a list which is an extension of 1’’”. The Dodge. Eur. J. Phycol 30. 1995. Fig. 6A-C  
closest species to O. laticeps is O. mediterraneum,  
Glenodinium danicum Paulsen (Basionym)  
which was also described by Schiller (1937). Okolodkov & Dodge 1995, pp. 301-302, 304, figs.  
The presence of rows of hexagonal pores on the 1-11.  
hypotheca of O. mediterraneum, differentiate it  
from O. laticeps. Additionally, a spine process in  
Plate formula is: Po, X, 4′, 3a, 7′′, 6c, 4s, 6′″,  
the antapex is found only in O. laticeps and the 2″″. Cells are almost rounded. The thecal surface  
epitheca of O. mediterraneum is more flattened is slightly or deeply rough. Cingulum is deeply  
(Schiller, 1937). Burns & Mitchell (1982) analyzed excavated, displaced one girdle width, and presents  
New Zealand field material and found that these lists at both sides. Sulcus is concave with two lists,  
features that differentiate both species were found the left one more prominent than the right one (Fig.  
in the same specimen due to a multilayered 6A). The apical pore plates are surrounded by a  
structure of the theca, and consequently considered collar that extends ventrally to the sulcus, covering  
O. mediterraneum as a synonym of O. laticeps. partially plate 1’ (Figs. 6A-C). The apical pore  
More recently, Gómez (2018) reviewed the complex consists of a central structure surrounded  
synonymy of the dinoflagellate genera Oxytoxum by a horseshoe-shaped plate (Po) and another small  
and Corythodinium and placed O. laticeps in a plate (x) located in the ventral left region of the  
group composed by O. sphaeroideum and allied apical pore complex (Fig. 6B). Both epitheca and  
species that present a small size, rounded cell shape hypotheca show pores in the plates which can be  
and absence of spines. The author remarked that arranged in straight rows that run through the edges  
there were lots of species misidentifications within of the plate or forming concentric rows (Fig. 6A,  
Oxytoxum and Corythodinium in the past, and that arrowhead). Intercalary plate 2a can be six-sided  
132  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
Fig. 6. SEM images of Peridiniella danica (A-C) and Peridiniella globosa (D-F). A: Ventral view, note the  
collar surrounding the apical pore plates and the arrangement of the pores on the theca surface (arrowhead).  
B-C: antapical views, note the different shape of plate 2a, hexagonal in B and pentagonal in C-D: Ventral  
view, note the collar surrounding the apical pore plates and the arrangement of the pores on the theca  
surface (arrowhead). E: Dorso-apical view, note the small plate 2a with a depression on the center. F: Apical  
view, note the small 2a plate. Scale bars: 10 µm.  
(
hexagonal) (Fig. 6B) or five-sided (pentagonal) sides. Both epitheca and hypotheca show pores in  
(Fig. 6C). Autotrophic species. Dimensions: length the plates which can be arranged in straight rows  
average 23.9 µm ± 5.3 (n = 6), width average 22.0 that run through the edges of the plate or forming  
µm ± 6.1 (n = 5).  
concentric rows (Fig. 6D, arrowhead). Intercalary  
plate 2a is pentagonal, very small and it is depressed  
Peridiniella globosa (Dangeard) Okolodkov. Acta with respect to the cell surface or shows a depression  
Bot. Mex. 74. 2006. Fig. 6D-F. on the center (Fig. 6E, F). Autotrophic species.  
Peridinium globosum Dangeard (Basionym). Dimensions: length average 31.3 µm ± 5.7 (n = 5),  
Dangeard 1927 (as Peridinium globosum), p. 355, width average 32.2 µm ± 6.1 (n = 6).  
fig. 20.  
Distribution and habitat. P. danica seems to be  
Plate formula is: Po, X, 4′, 3a, 7′′, 6c, 4s, 6′″, 2″″. a cosmopolitan species, although it has been found  
Cells are rounded (Fig. 6D). The thecal surface is mainly in cold waters, being widely distributed  
smooth or slightly rough. The collar surrounding in the northeast Atlantic Ocean (Okolodkov &  
the apical pore plates is not so evident in cells with Dodge, 1995 and references therein). Moreover,  
a smooth theca. Cingulum is deeply excavated, Peridiniella sp. recently mentioned for the western  
displaced one girdle width and presents lists at both Antarctic Peninsula by Mascioni et al. (2019)  
133  
Bol. Soc. Argent. Bot. 56 (2) 2021  
corresponds to P. danica (Mascioni M., pers. com.). shapes of plate 2a (hexagonal or pentagonal) and  
By contrast, P. globosa is listed in the Mexican two different arrangements of the pores (straight  
Pacific (Okolodkov & Gárate-Lizárraga, 2006) and rows that run through the edges of the plate or  
in the Black Sea (Barinova et al., 2011). In the forming concentric rows). By contrast, P. globosa  
southwest Atlantic, the only Peridiniella species showed a very small plate 2a and bigger size than  
recorded, as far we know, is P. sphaeroidea found P. danica. Plate 1′ of our specimens is narrower  
by Balech (1988) from 36°S to 39°S in temperate than that illustrated by Dangeard (1927; as  
waters (15-18 °C). In our study, Peridiniella Peridinium globosum).  
spp. cells were observed during all expeditions,  
covering a wide area of the Argentine Sea (≈ 39- Prorocentrum nux Puigserver & Zingone.  
5
4 °S). Their abundance was usually low (e.g. Phycologia 41. 2002. Fig. 7  
-1  
from 20 to 1,960 cells L ) in most expeditions, but  
peaks of ≈7 x10 cells L were recorded during  
3
-1  
Globose cell shape (Fig. 7A) and very convex  
spring at three stations (St. 37, 38 and 42) from valve shape (Fig. 7B, C). The periflagellar  
southern slope waters. Maximum Peridiniella area is located on the right valve and is not  
spp. abundances were detected in cold waters (8 depressed (Fig. 7D, E). The flagellar pore is  
°
C) (Table 1), which agrees with the background bi-lobed and surrounded by seven plates (Fig.  
data mentioned above for P. danica. 7E). The surface of the valves is completely  
The cell contour and size of Peridiniella smooth, but shows small and large pores, usually  
species are very similar to species of the toxigenic with trichocysts emerging from them (Fig. 7E,  
genus Alexandrium (Okolodkov & Gárate- F). The intercalary bands are well defined and  
Lizárraga, 2006), and therefore, both taxa can be overgrowth is evident in lateral view (Fig. 7D,  
misidentified during routine cell counting with G, arrowheads). On the right valve, one small  
optical microscopy. In this study, Peridiniella and three large pores are located in the apical  
spp. and Alexandrium spp. co-occurred in 19 zone, close to the periflagellar area (Fig.7-F),  
samples from E3, in which Alexandrium sp. cell while both valves show a large pore and three  
abundances ranged between 20 and 28,000 cells small pores at the antapical extreme (Fig. 7G, H,  
-
1
L . This highlights the importance of thecal plate arrows). Additionally, the left valve presents one  
observations during monitoring of harmful algae.  
small and two large pores grouped near the suture  
halfway between the apical and antapical ends  
Observations. There are only four described (Fig. 7I, arrow). This is an autotrophic species  
species of Peridiniella: P. danica, P. catenata, with two ochre-yellow chloroplasts (Puigserver &  
P. sphaeroidea and P. globosa. All these species Zingone, 2002). Dimensions: length average 7.9  
have a similar almost rounded cell shape and µm ± 0.9 (n = 20), width average 7.3 µm ± 1.1 (n  
present the median and deep sulcus with lists = 20), depth average 7.8 µm ± 1.5 (n =15).  
in both margins, but they can be differentiated  
by the following characteristics: P. danica is  
Distribution and habitat. P. nux was described  
slightly dorsoventrally compressed, P. catenata is based on a culture (Pronap I) from the Tyrrhenian  
characterized by the presence of antapical spines Sea in the Gulf of Naples (Puigserver & Zingone,  
(
Dodge, 1987), P. sphaeroidea shows a strong 2002). Another strain previously isolated from  
polygonal ornamentation over the surface of the Plymouth waters (UK) in 1957 was also identified  
thecal plates (Balech, 1979; Dodge, 1987), and P. as P. nux by Puigserver & Zingone (2002). By  
globosa possess a very small second intercalary contrast, as far as we know, P. nux was never  
plate (2a) and a more globose cell contour than detected elsewhere since its original description,  
the other species (Dangeard, 1927; as Peridinium probably due to the extremely small size and very  
globosum). Observed cells of P. danica were thin theca. In our study, very small and globose  
similar in size to materials from the Norwegian cells of a thecate dinoflagellate were observed  
Sea presented by Okolodkov & Dodge (1995) in the San Matías Gulf (station 10K2 from E2,  
(
21-25 µm long, 20-22 µm wide). In accordance Table 1), and its abundance was estimated as  
-1  
with these authors, we observed two different 82,000 cells L . Further SEM analyses of bottle  
134  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
Fig. 7. LM (A-C) and SEM (D-I) images of Prorocentrum nux. A: Cell in lateral view. B: Empty valve in lateral  
view. C: Empty right valve in apical view. D: Whole cell, apical view. Note the overgrowth from the intercalary  
bands (arrowheads). E: Detail from 2, note the large pores and the small pore from the periflagellar area and  
the trichocysts emerging from them. F: Empty right valve. G: Whole cell, lateral view. Note the overgrowth  
from the intercalary bands (arrowheads) and the antapical group of pores (arrows). H: Whole broken cell,  
note the antapical group of pores (arrows). I: empty left valve, note the pores near the suture in the middle  
of the cell (arrow). Scale bars A-C, D, F-I: 5 µm; E: 1 µm.  
sample concentrates revealed that those cells  
Observations. P. nux has unique morphological  
corresponded to P. nux, a species that has never characteristics that differentiate it from other  
been quantified in field samples before. Total Prorocentrum species, such as the globose shape  
5
plankton abundance at station 10K2 was 3 x10  
in apical and antapical view, the overgrowth  
-
1
cells L and was dominated by small (<15 µm) of the intercalary bands and the particular  
dinoflagellates, of which Prorocentrum nux distribution of small and large pores (Puigserver  
and Azadinium-like cells were the dominant & Zingone, 2002). Cells analyzed in our study  
taxa. Until now, there are no reports of harmful were similar in size to those provided in the  
events related to P. nux, although is important to original description (6.3-9.0 µm long, 5.3-10.0  
consider that small Prorocentrum species, such µm wide), which placed P. nux as the smallest  
as P. cordatum, can produce dense blooms and from all Prorocentrum species and even one of  
generate anoxia and harmful effects on marine life the smallest thecate dinoflagellates known until  
(
Heil et al., 2005).  
now.  
135  
Bol. Soc. Argent. Bot. 56 (2) 2021  
ConCluSionS  
bibliograPhy  
The detailed examination with optical and  
electron microscopy of field plankton samples  
collected in a large latitudinal and seasonal  
gradient across the Argentine Sea lead to the  
finding of seven dinoflagellate that are little  
known from marine waters worldwide. Most  
of them were rare or scarce; which, together  
with the requirement of detailed ultrastructural  
observations for their specific identification,  
justifies the poor information about their  
occurrence. However, Prorocentrum nux, which  
ABÉ, T.H. 1967. The armoured Dinoflagellata: II.  
Prorocentridae and Dinophysidae (B)—Dinophysis  
and its allied genera. Publ. Seto Mar. Biol. Lab. 15:  
37–78.  
AKSELMAN, R. 1985. Contribución al estudio de la  
familia Gymnodiniaceae Lemmermann (Dinophyta)  
del Atlántico Sudoccidental. Physis 43: 39-50.  
AKSELMAN, R. 1986. Contribución al conocimiento  
de la familia Warnowiaceae Lindenmann (Clase  
Dinophyceae) del Atlántico sudoccidental.  
Darwiniana 27: 9-17.  
can be overlooked during routine microscopy AKSELMAN, R. 1987. Quistes planctónicos de  
examinations due to its very small size and thin  
theca, represented an important component of  
Dinofíceas en áreas de plataforma del Atlantico  
sudoccidental. I. Reporte taxonómico de la Familia  
Peridiniaceae Ehrenberg. Bol. Inst. Paul. Oceanogr.  
35: 17-32.  
4
-1  
phytoplankton (8.2 x10 cells L ). Likewise,  
small unidentified specimens of Gyrodinium  
with distinctive morphological features were  
AKSELMAN, R. & R. NEGRI. 2012. Blooms of  
Azadinium cf. spinosum Elbrächter et Tillmann  
(Dinophyceae) in northern shelf waters of Argentina,  
Southwestern Atlantic. Harmful Algae 19: 30–38.  
https://dx.doi.org/10.1016/j.hal.2012.05.004  
AKSELMAN, R, B. KROCK, T.J. ALPERMANN, U.  
TILLMANN, M. BOREL, G.O. ALMANDOZ, &  
M.E. FERRARIO. 2015. Protoceratium reticulatum  
(Dinophyceae) in the austral southwestern Atlantic  
and the first report on YTX-production in shelf  
waters of Argentina. Harmful Algae 45: 40-52.  
https://dx.doi.org/10.1016/j.hal.2015.03.001  
3
recorded in moderate densities (4.9 - 6.5 x10  
-
1
cells L ). The results obtained in this study  
together with other recent findings from the  
same area suggest that the Argentine Sea presents  
high dinoflagellate diversity, and contribute  
to the understanding of global distribution  
patterns of small, usually rare and hard to detect  
dinoflagellate species.  
author ContributionS  
ANTACLI, J.C., R.I. SILVA, A.J. JAUREGUIZAR, D.R.  
HERNÁNDEZ, M. MENDIOLAR, M.E. SABATINI  
& R. AKSELMAN. 2018. Phytoplankton and  
protozooplankton on the southern Patagonian shelf  
Both authors contributed to article  
conceptualization, microscopic analysis and  
writing.  
(Argentina, 47°-55°S) in late summer: potentially  
toxic species and community assemblage structure  
aCKnoWledgementS  
linked to environmental features. J. Sea Res. 140: 63-  
8
0. https://dx.doi.org/10.1016/j.seares.2018.07.012  
The authors thank the friendly reception  
and support of the crew of the R/V Puerto  
Deseado (CONICET-MINDEF, Argentina) in  
BALECH, E. 1976. Clave ilustrada de dinoflagelados  
Antárticos. Instituto Antártico Argentino (IAA),  
Buenos Aires, Argentina.  
2
012 and 2013 of the R/V Bernardo Houssay  
BALECH, E. 1979. Dinoflagelados campaña  
oceanográfica Argentina, Islas Orcadas. Armada  
Argentina Servicio de Hidrografía Naval 655: 1-76.  
BALECH, E. 1988. Los dinoflagelados del Atlántico  
Sudoccidental. Publicaciones Especiales del Instituto  
Español de Oceanografía, Madrid, España.  
BALECH, E. 1995. The genus Alexandrium Halim  
(Dinoflagellata). Sherkin Island Marine Station,  
Cork, Ireland.  
(
Prefectura Naval, Argentina) in 2013 and 2016  
and of the R/V Coriolis II (ISMER-UQAM-  
McGill University- INRS/ETE-MLI/DFO,  
Canada) in 2014. Finally, we would like to thank  
both anonymous reviewers for their valuable  
comments and suggestions on the manuscript.  
This study was partially supported by PICT  
0
2719 (ANPCyT) grant.  
136  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
BALECH, E., 2002. Dinoflagelados tecados tóxicos del  
isolated from the East China Sea in a dinoflagellate  
bloom. J. Oceanol. Limnol. 39: 242-258.  
https://doi.org/10.1007/s00343-020-0221-4  
CAMPBELL, P.H. 1973. Studies on brackish water  
phytoplankton. Sea Grant Publ., University of North  
Carolina, NC.  
DANGEARD, P. 1927. Phytoplancton de la croisière du  
Sylvana (Fevrier-juin 1913). Ann. Inst. Océanogr.  
4: 285-407.  
cono sur americano. In: Sar, E. A., Ferrario, M. E.,  
Reguera, B. (Eds.), Floraciones Algales Nocivas  
en el Cono Sur Americano. Instituto Español  
Oceanográfico de Madrid, Vigo, pp. 125–144.  
BALECH, E., R. AKSELMAN, H.R. BENAVIDES &  
R.M. NEGRI. 1984. Suplemento a “Los dinoflagelados  
del Atlántico Sudoccidental”. Rev. Investigación y  
Desarrollo Pesquero INIDEP 4: 5-20.  
BARDOUIL, M., B. BERLAND, D. GRZEBYK &  
P. LASSUS. 1991. L’existence de kystes chez les  
Dinophysiales. C. R. Acad. Sci. Paris Ser. III. 312:  
DAUGBJERG, N, G. HANSEN, J. LARSEN & Ø.  
MOESTRUP. 2000. Phylogeny of some major genera  
of dinoflagellates based on ultrastructure and partial  
LSU rDNA sequence data, including the erection  
of 3 new genera of unarmored dinoflagellates.  
Phycologia 39: 302-317.  
6
63-669.  
BARINOVA, S.S., L. KUKHALEISHVILI, E. NEVO  
Z. JANELIDZE. 2011. Diversity and ecology of  
&
algae in the Algeti National Park as a part of the  
Georgian system of protected areas. Turk. J. Bot.  
https://dx.doi.org/10.2216/i0031-8884-39-4-302.1  
DE SALAS, M.F., C.J.S. BOLCH, L. BOTES, G. NASH,  
S.W. WRIGHT & G.M. HALLEGRAEFF. 2003.  
Takayama gen. nov. (Gymnodiniales, Dinophyceae),  
a new genus of unarmored dinoflagellates with  
sigmoid apical grooves, including the description of  
two new species. J. Phycol. 39: 1233-46.  
3
5: 729-774. https://dx.doi.org/10.3906/bot-1009-83  
BARRÍA DE CAO, S. & C. PICCOLO. 2008. Presencia  
y variación estacional del dinoflagelado heterótrofo  
Gyrodinium fusus (Meunier) Akselman en el estuario de  
Bahía Blanca, Argentina. Atlántica, Rio Grande 30: 129-  
1
37. https://dx.doi.org/10.5088/atlântica.v30i2.1512  
https://dx.doi.org/10.1111/j.0022-3646.2003.03-019.x  
DE SALAS, M.F., A. LAZA‐MARTINEZ & G.M.  
HALLEGRAEFF. 2008. Novel unarmored  
dinoflagellate from the toxigenic family Kareniaceae  
(Gymnodiniales): five new species of Karlodinium  
and one new Takayama from the Australian sector of  
the Southern Ocean. J. Phycol. 44: 241-257.  
https://dx.doi.org/10.1111/j.1529-8817.2007.00458.x  
DODGE, J.D. 1987. An SEM study of Peridiniella  
sphaeroidea and P. catenata (Dinophyceae). Arch.  
Protistenk. 134: 139-148.  
BENICO, G., TAKAHASHI, K., LUM, W. M. &  
IWATAKI, M. 2019. Morphological variation,  
ultrastructure, pigment composition and phylogeny  
of a star-shaped dinoflagellate Asterodinium gracile  
(
Kareniaceae, Dinophyceae). Phycologia 58: 405-  
8. https://doi.org/10.1080/00318884.2019.1601948  
BERGHOLTZ, T., N. DAUGBJERG, Ø. MOESTRUP  
M. FERNÁNDEZ‐TEJEDOR. 2005. On the  
1
&
identity of Karlodinium veneficum and description of  
Karlodinium armiger sp. nov. (Dinophyceae), based  
on light and electron microscopy, nuclear‐encoded  
lsu rdna, and pigment composition. J. Phycol. 42:  
DODGE, J.D. & R.D. SAUNDERS 1985. A partial  
revision of the genus Oxytoxum (Dinophyceae) with  
the aid of scanning electron microscopy. Bot. Mar.  
28: 99-122.  
1
70-193.  
https://dx.doi.org/10.1111/j.1529-8817.2006.00172.x  
BOUTRUP, P.V., Ø., MOESTRUP, U. TILLMANN,  
FABRO, E., G.O. ALMANDOZ, M.E. FERRARIO, M.S.  
HOFFMEYER, R.E. PETTIGROSSO, R. UIBRIG  
& B. KROCK. 2015. Co-occurrence of Dinophysis  
tripos and pectenotoxins in Argentinean shelf  
waters. Harmful Algae 42: 25–33.  
https://dx.doi.org/10.1016/j.hal.2014.12.005  
FABRO, E., G.O. ALMANDOZ, M.E. FERRARIO, U.  
TILLMANN, A.D. CEMBELLA, & B. KROCK.  
2016. Distribution of Dinophysis species and  
their association with lipophilic phycotoxins in  
plankton from the Argentine Sea. Harmful Algae  
59: 31-41.  
&
N. DAUGBJERG. 2017. Ultrastructure and  
phylogeny of Kirithra asteri gen. et sp. nov.  
Ceratoperidiniaceae, Dinophyceae) –a free-living,  
(
thin-walled marine photosynthetic dinoflagellate  
from Argentina. Protist 168: 586-611.  
https://dx.doi.org/10.1016/j.protis.2017.08.001  
BURNS, D.A. & J.S. MITCHELL. 1982. Some coastal  
marine dinoflagellates from around New Zealand.  
New Zealand J. Mar. Freshwater Res. 16: 69-79.  
CEN, J., J. WANG, L. HUANG, Y. LIN, G. DING, Y.  
QI, & S. LV. 2021. Karlodinium elegans sp. nov.  
(
Gymnodiniales, Dinophyceae), a novel species  
https://dx.doi.org/10.1016/j.hal.2016.09.001  
137  
Bol. Soc. Argent. Bot. 56 (2) 2021  
FABRO, E., G.O. ALMANDOZ, M.E. FERRARIO,  
U. JOHN, U. TILLMANN, K. TOEBE, B.  
KROCK & A. CEMBELLA. 2017. Morphological,  
molecular, and toxin analysis of field populations  
of Alexandrium genus from the Argentine Sea. J.  
Phycol. 53: 1206-1222.  
www.algaebase.org [Acceso: 05 September 2019].  
HACKETT, J.D., D.M. ANDERSON, D.L. ERDNER  
& D. BHATTACHARYA. 2004. Dinoflagellates: a  
remarkable evolutionary experiment. Amer. J. Bot.  
91: 1523-1534.  
https://dx.doi.org/10.1111/jpy.12574  
https://dx.doi.org/10.3732/ajb.91.10.1523  
FABRO, E., G.O. ALMANDOZ, B. KROCK & U.  
TILLMANN. 2019. Field observations of the  
dinoflagellate genus Azadinium and azaspiracid  
toxins in the south-west Atlantic Ocean. Mar.  
Freshwater Res. 71: 832-843.  
HARAGUCHI, L. & C. ODEBRECHT. 2010.  
Dinophysiales (Dinophyceae) no extremo Sul do  
Brasil (inverno de 2005, verão de 2007). Biota  
Neotrop. 10: 101-114.  
https://dx.doi.org/10.1590/S1676-06032010000300011  
HASLE, G.R. 1960. Phytoplankton and ciliate species  
from the tropical Pacific. Skrifter utgitt av Det Norske  
Videnskaps Akademi Oslo 2: 1-50.  
HEIL, C.A., P.M. GLIBERT & C. FAN. 2005. Prorocentrum  
minimum (Pavillard) Schiller: a review of a harmful  
algal bloom species of growing worldwide importance.  
Harmful Algae 4: 449–470.  
https://dx.doi.org/10.1016/j.hal.2004.08.003  
IRIARTE, J.L. & G.A. FRYXELL. 1995. Microplankton at  
the equatorial Pacific (140°W) during the JGOFS EqPac  
Time Series studies: March to April and October 1992.  
Deep Sea Res. II 42: 559-583.  
IVIN, V.V., A.Y. ZVYAGINTSEV & I.A. KASHIN. 2014.  
Monitoring and control of alien species in marine and  
insular specially protected areas by the example of the  
Far East Marine State Natural Biosphere Reserve. Russ.  
J. Biol. Invasions 5: 156-175.  
https://doi.org/10.1134/S2075111714030060  
JANG, S.H., H.J. JEONG, M.J. LEE, J.H. KIM & J.H. YOU.  
2019. Gyrodinium jinhaense n. sp., a new heterotrophic  
unarmored dinoflagellate from the coastal waters of  
Korea. J. Eukar. Microbiol. 66: 821–835.  
https://doi.org/10.1071/MF19124.  
GAST, R.J., D.M. MORAN, D.J. BEAUDOIN, J.N.  
BLYTHE, M.R. DENNETT & D.A. CARON. 2006.  
Abundance of a novel dinoflagellate phylotype in the  
Ross Sea, Antarctica. J. Phycol. 42: 233-42.  
https://dx.doi.org/10.1111/j.1529-8817.2006.00183.x  
GAST, R.J., D.M. MORAN, M.R. DENNETT & D.A.  
CARON. 2007. Kleptoplasty in an Antarctic  
dinoflagellate: caught in evolutionary transition.  
Environm. Microbiol. 9: 39-45  
https://dx.doi.org/10.1111/j.1462-2920.2006.01109.x  
GÓMEZ, F. 2018. A review on the synonymy of the  
dinoflagellate genera Oxytoxum and Corythodinium  
(Oxytoxaceae, Dinophyceae). Nova Hedwigia 107:  
1
41-165.  
https://dx.doi.org/10.1127/nova_hedwigia/2017/0460  
GÓMEZ, F., H. CLAUSTRE & S. SOUISSI. 2008.  
Rarely reported dinoflagellates of the genera  
Ceratium, Gloeodinium, Histioneis, Oxytoxum  
and Prorocentrum (Dinophyceae) from the open  
southeast Pacific Ocean. Revista Biol. Mar.  
Oceanogr. 43: 25-40.  
GÓMEZ, F., K.C. WAKEMAN, A. YAMAGUCHI &  
H. NOZAKI. 2016. Molecular phylogeny of the  
marine planktonic dinoflagellate Oxytoxum and  
Corythodinium (Peridiniales, Dinophyceae). Acta  
Protozool. 55: 239-248.  
https://dx.doi.org/10.4467/16890027AP.16.026.6095  
GÓMEZ, F., L.F. ARTIGAS, & R. GAST. 2020.  
Phylogeny and synonymy of Gyrodinium  
heterostriatum comb. nov. (Dinophyceae), a  
common unarmored dinoflagellate in the world  
oceans. Acta Protozoologica 59: 77-87.  
https://dx.doi.org/10.4467/16890027AP.20.007.12675  
GRAHAM, L.E. & L.W. WILCOX. 2000. Algae.  
Prentice-Hall, Upper Saddle River, New Jersey.  
GUIRY, M.D. & G.M. GUIRY. 2019. AlgaeBase. World-  
wide electronic publication, National University  
https://dx.doi.org/10.1111/jeu.12729  
KOFOID, C.A. & O. SWEZY. 1921. The free-living  
unarmored Dinoflagellata. Univ. Calif. Press., Berkeley,  
California.  
KOPCZYŃSKA, E.E. & M. FIALA. 2003. Surface  
phytoplankton composition and carbon biomass  
distribution in the Crozet Basin during austral summer  
of 1999: variability across frontal zones. Polar Biol. 27:  
17–28. https://doi.org/10.1007/s00300-003-0564-2  
LASSUS, P., N., CHOMÉRAT, E., NÉZAN & P. HESS.  
2016. Toxic and harmful microalgae of the World Ocean.  
Micro-algues toxiques et nuisibles de l’océan mondial.  
IOC Manuals and Guides 68 (English/French), Intl.  
Society for the Study of Harmful Algae (ISSHA) /  
Intergovernmental Oceanographic Commission of  
UNESCO (IOC), Copenhagen, Denmark.  
138  
E. Fabro & G. O. Almandoz - Rare marine dinoflagellates  
LUO, W, C. DAI, H. LI & X.Y. GAO. 2011. Phylogenetic  
REGUERA, B. & S. GONZÁLEZ‐GIL. 2001. Small  
cell and intermediate cell formation in species  
of Dinophysis (Dinophyceae, Dinophysiales). J.  
Phycol. 37: 318–333. https://doi.org/10.1046/j.1529-  
8817.2001.037002318.x  
SCHILLER, J. 1937. Dinoflagellatae (Peridineae) in  
monographischer Behandlung. In: RABENHORST,  
L. (ed.), Kryptogamen-Flora von Deutschland,  
Österreichs und der Schweiz, Volume 2, pp. 1-589.  
Akad. Verlag., Leipzig, Germany.  
diversity of dinoflagellates in polar regions.  
Advances in Polar Science 1: 35-41.  
https://dx.doi.org/10.3724/SP.J.1085.2011. 00035  
MASCIONI, M., G.O. ALMANDOZ, A.O. CEFARELLI,  
A. CUSICK, M.E. FERRARIO & M. VERNET. 2019.  
Phytoplankton composition and bloom formation in  
unexplored nearshore waters of the western Antarctic  
Peninsula. Polar Biol. 42: 1859-1872.  
https://doi.org/10.1007/s00300-019-02564-7  
NÉZAN, E., R. SIANO, S. BOULBEN, C. SIX, G.  
BILIEN, K. CHÈZE, A. DUVAL, S. LE PANSE,  
J. QUÉRÉ & N. CHOMÉRAT. 2014. Genetic  
diversity of the harmful family Kareniaceae  
SCHNEPF, E., ELBRÄICHTER, M. 1988.  
Cryptophycean-like double membrane-bound  
chloroplast in the dinoflagellate Dinophysis Ehrenb.:  
Evolutionary, phylogenetic and toxicological  
implications. Bot. Acta 101: 196-203.  
(
Gymnodiniales, Dinophyceae) in France, with  
the description of Karlodinium gentienii sp. nov.:  
a new potentially toxic dinoflagellate. Harmful  
Algae 40: 75–91.  
STEIDINGER, K.A. & K. TANGEN. 1997.  
Dinoflagellates. In: TOMAS, C. (Ed.) Identifying  
Marine Phytoplankton. Academic Press, San Diego.  
SUNESEN, I., F. RODRÍGUEZ HERNÁNDEZ, D.  
AGUIAR JUÁREZ, J. TARDIVO KUBIS, A.  
LAVIGNE, A. ROSSIGNOLI, P. RIOBÓ & E.  
SAR. 2020a. Morphology, genetics and toxin profile  
of Prorocentrum texanum (Dinophyceae) from  
Argentinian marine coastal waters. Phycologia 59:  
634-650.  
https://dx.doi.org/10.1080/00318884.2020.1830552  
SUNESEN, I., F. RODRÍGUEZ HERNÁNDEZ,  
J. TARDIVO KUBIS, D. AGUIAR JUÁREZ,  
A. RISSO, A. LAVIGNE, S. WIETKAMP, U.  
TILLMANN & E. SAR. 2020b. Morphological  
and molecular characterization of Heterocapsa  
claromecoensis sp. nov. (Peridiniales, Dinophyceae)  
from Buenos Aires coastal waters (Argentina). Eur.  
J. Phycol. 55: 490-506.  
https://dx.doi.org/10.1016/j.hal.2014.10.006  
OJEDA, A. 1996. Biomasa planctónica y clorofila a en  
las Islas Canarias Occidentales. Mayo 1986. In:  
LLINÁS, O., J.A. GONZÁLEZ, & M.J. RUEDA  
(
eds.), Oceanografía y Recursos Marinos en el  
Atlántico Centro-Oriental, pp. 91–121. Instituto  
Canario de Ciencias Marinas, Cabildo Insular de  
Gran Canaria.  
OKOLODKOV,Y.B.&J.D.DODGE.1995.Redescription  
of the planktonic dinoflagellate Peridiniella danica  
(Paulsen) comb. nov. and its distribution in the N. E.  
Atlantic. Eur. J. Phycol. 30: 299-306.  
OKOLODKOV, Y.B. & I. GÁRATE-LIZÁRRAGA.  
2
006. An annotated checklist of dinoflagellates  
(Dinophyceae) from the Mexican Pacific. Acta Bot.  
Mex. 72: 1-154.  
PAULMIER, G., B. BERLAND, C. BILLARD & E.  
NEZAN. 1995. Gyrodinium corsicum nov. sp.  
https://doi.org/10.1080/09670262.2020.1750059  
TAKANO, Y. & T. HORIGUCHI. 2004. Surface  
ultrastructure and molecular phylogenetics of  
four unarmored heterotrophic dinoflagellates,  
including the type species of the genus Gyrodinium  
(Dinophyceae). Phycol. Res. 52: 107-116.  
https://doi.org/10.1111/j.1440-183.2004.00332.x  
TAYLOR, F.J.R.. 1976. Dinoflagellates from the  
International Indian Ocean Expedition. A report on  
material collected by R/V «Anton Bruun» 1963-  
1964. Biblioth. Bot. 132: 1-234.  
TILLMANN, U. 2018. Electron microscopy of a 1991  
spring plankton sample from the Argentinean Shelf  
reveals the presence of four new species of the  
Amphidomataceae (Dinophyceae). Phycol. Res. 66:  
269-290. https://dx.doi.org/10.1111/pre.12225  
(
Gymnodiniales, Dinophycées), organisme responsible  
d’une ‘‘eau verte’’ dans l’étang marin de Diana  
Corse), en Avril 1994. Cryptog. Algol. 16: 77–94.  
(
PÉREZ-CASTRESANA, G., E. VILLAMIZAR,  
R.VARELA & Y. FUENTES. 2014. Descripción  
preliminar del fitoplancton en seis arrecifes coralinos  
del parque nacional Archipiélago de Los Roques.  
Acta Biol. Venez. 34: 293-309.  
PUIGSERVER, M. &A. ZINGONE. 2002. Prorocentrum  
nux sp. nov. (Dinophyceae), a small planktonic  
dinoflagellate from the Mediterranean Sea, and  
discussion of P. nanum and P. pusillum. Phycologia  
4
1: 29-38.  
https://doi.org/10.2216/i0031-8884-41-1-29.1  
139  
Bol. Soc. Argent. Bot. 56 (2) 2021  
TILLMANN, U.  
&
R. AKSELMAN. 2016.  
TILLMANN, U., M. GOTTSCHLING, B. KROCK, K.F.  
SMITH & V. GUINDER. 2019. High abundance of  
Amphidomataceae (Dinophyceae) during the 2015  
spring bloom of the Argentinean Shelf and a new,  
non-toxigenic ribotype of Azadinium spinosum.  
Harmful Algae 84: 244–260.  
https://dx.doi.org/10.1016/j.hal.2019.01.008.  
UTERMÖHL, H. 1958. Zur Vervollkommnung  
der quantitativen Phytoplankton Methodik.  
Internationale Vereinigung für theoretische und  
angewandte Limnologie 9: 1-38.  
Revisiting the 1991 algal bloom in shelf waters  
off Argentina: Azadinium luciferelloides sp  
nov. (Amphidomataceae, Dinophyceae) as the  
causative species in a diverse community of other  
amphidomataceans. Phycol. Res. 64: 160-175.  
https://dx.doi.org/10.1111/pre.12133  
TILLMANN, U., C.M. BOREL, F. BARRERA, R.  
LARA, B. KROCK, G.O, ALMANDOZ, M. WITT  
&
N. TREFAULT. 2016. Azadinium poporum from  
the Argentine Continental Shelf, Southwestern  
Atlantic, produces azaspiracid-2 and azaspiracid-2  
phosphate. Harmful Algae 51: 40–55.  
VENRICK, E.L. 1982. Phytoplankton in an oligotrophic  
ocean: observations and questions. Ecol. Monogr.  
52: 129-154.  
https://doi.org/10.1016/j.hal.2015.11.001  
TILLMANN, U., M. GOTTSCHLING, V. GUINDER  
YOO, Y.D., E.Y. YOON, H.J. JEONG, K.H. LEE, Y.J.  
HWANG, K.A. SEONG, J.S. KIM & J.Y. PARK.  
2012. The newly described heterotrophic dinoflagellate  
Gyrodinium moestrupii, an effective protistan grazer  
of toxic dinoflagellates. J. Eukar. Microbiol. 60: 13-24.  
https://dx.doi.org/10.1111/jeu.12002  
&
B. KROCK. 2018. Amphidoma parvula  
Amphidomataceae), a new planktonic dinophyte  
from the Argentine Sea. Eur. J. Phycol. 53: 14-  
8.  
https://dx.doi.org/10.1080/09670262.2017.1346205  
(
2
140