Pollen and SPoreS morPhology from the holocene  
of the Iberá wetlandS In northeaStern argentIna  
morfología del Polen y eSPoraS del holoceno de loS eSteroS del  
Iberá en el noreSte de argentIna  
1
Lionel Fernandez Pacella * & Mercedes Di Pasquo  
Summary  
Background and aims: Taxonomic works of the modern pollen grains from the  
vegetation of the Iberá Wetlands from northeastern Argentina, and other areas of  
the Corrientes province, have mostly been carried out in last decade. However, very  
few of these taxonomic works include illustration of palynomorphs. The objective  
of this contribution is to provide the first morphological records of palynomorphs of  
angiosperms, ferns, lycophytes and bryophytes from sediments from the Holocene  
of the Iberá Wetlands.  
M&M: Core samples obtained by mean of a Livingston-type sampler from six lakes in  
their central and deepest parts on the western margin of the Iberá Wetlands were  
analyzed.  
1
. Centro de Ecología Aplicada del  
Litoral (CECOAL-CONICET-UNNE),  
Dpto. Biología-FaCENA-UNNE, Ruta  
5
2
, Km 2,5, Corrientes, Argentina.  
. Laboratorio de Palinoestratigrafía  
y Paleobotánica, CICyTTP-CONICET,  
Dr. Materi y España s.n., Diamante,  
Results: Fifty-five types of palynomorphs are described and illustrated: 46 pollen  
types correspond to 27 families of angiosperms and nine trilete spore-types to ferns,  
lycophytes and bryophytes. Information to differentiate local (species that form part of  
the natural vegetation of the Iberá Wetlands) and extra-local taxa (those that do not  
belong to the Iberá), that achieved to depocenters mostly by means of wind currents  
coming from farther regional vegetation, was included.  
Conclusions: Pollen grains and spores identifications up to species level enhances  
paleoenvironmental reconstructions based on more accurate ecologic information  
and geographical distribution. This work broadens the knowledge of the palynological  
flora of northeastern Argentina and it will contribute to differentiate the local vegetation  
from the extra-local in future paleocological and paleoenvironmental interpretations.  
*
lionelpacella@yahoo.com.ar  
Citar este artículo  
FERNANDEZ PACELLA, L. & M. DI  
PASQUO. 2022. Pollen and spores  
morphology from the Holocene of  
the Iberá Wetlands in northeastern  
Argentina. Bol. Soc. Argent. Bot. 57:  
727-750.  
DOI: https://doi.  
org/10.31055/1851.2372.v57.  
n4.35662  
KeywordS  
Corrientes Province, hydrographic system Iberá, holocene, palynomoph.  
reSumen  
Introducción y objetivos: Los trabajos taxonómicos de polen actual de la vegetación  
de los esteros del Iberá en el noreste de Argentina y otras áreas de la provincia  
de Corrientes se han llevaron a cabo mayoritariamente en la última década. Sin  
embargo, muy pocos de estos trabajos incluyen la ilustración de los palinomorfos.  
El objetivo de esta contribución es proporcionar el primer registro morfológico de  
palinomorfos de angiospermas, helechos, licofitas y briofitas de sedimentos del  
Holoceno de los Esteros del Iberá.  
M&M: Se analizaron muestras de núcleos obtenidos por medio de un muestreador  
tipo Livingston de seis lagos en sus partes central y más profunda en el margen  
occidental de los Esteros del Iberá.  
Resultados: Se describen e ilustran 55 tipos de palinomorfos: 46 tipos de polen  
corresponden a 27 familias de angiospermas y nueve tipos de esporas triletas  
a helechos, licofitas y briofitas. Se incluye información para diferenciar taxones  
locales (que forman parte de la vegetación natural de los Esteros del Iberá) y extra-  
locales (aquellos que no pertenecen al Iberá) que lograron llegar a los depocentros  
provenientes de vegetación regional más lejana.  
Conclusiones: La identificación de granos de polen y esporas hasta el nivel de especie  
mejora las reconstrucciones paleoambientales basadas sobre información ecológica  
y distribución geográfica más precisas. Este trabajo amplía el conocimiento de la flora  
palinológica del noreste de Argentina y contribuirá a diferenciar la vegetación local de  
la extra-local en futuras interpretaciones paleoecológicas y paleoambientales.  
Recibido: 20 Nov 2021  
Aceptado: 19 Ago 2022  
Publicado impreso: 30 Dic 2022  
Editor: Gonzalo Márquez  
PalabraS clave  
Holoceno, palinomorfo, Provincia de Corrientes, sistema hidrográfico Iberá.  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
727  
Bol. Soc. Argent. Bot. 57 (4) 2022  
IntroductIon  
relevant to construct modern analogs of this region  
applied in palynological studies of surface and  
The geological history of the region currently subsurface samples, although very few taxonomic  
known as Iberá Wetlands in central-eastern works with illustration of palynomorphs published  
South America, currently northeastern Argentina, up to today (Anzótegui & Garralla, 1985). Cuadrado  
begins to have its own identity from the tectonic & Neiff (1993) contributed with the first analysis  
movements that determined the rise of the Andean of disperse pollen from samples collected in  
mountain range (Ramos, 1999). Orogeny unleashed dammed vegetation (“embalsados”) located in  
compressive forces from the East that fractured the eastern region of Iberá Wetlands. These authors  
powerful basaltic lava flows belonging to the Solari- established that only upper levels yielded pollen  
Serra Geral Formation (Cretaceous) accumulated grains representative of the current vegetation.  
in the study region (Herbst & Santa Cruz, 1985). They also found that pollen grains are poorly  
Thus, large blocks of rock generated and separated preserved, even physic and chemical features (e.g.  
by several fault systems with dominant NE-SW low oxygen, low light, acid pH and high amounts of  
and NW-SE strikes. The subsequent epirogenic organic matter) could have favored the preservation  
movements gave rise to the independent adjustment of organic matter. Later, Garralla (1998) interpreted  
of the megablocks, modeling the topography of that the region was vegetated by xero-halophyte  
the subsoil covered by sedimentary fill (Gentili forests at around 3,500 years BP.  
&
Rimoldi, 1979). This generated in northeastern  
Argentina, province of Corrientes, the extensive Characteristics of the study area  
depression that crosses it almost entirely in a  
Iberá Wetlands is one of the most important  
NE-SW direction, on which important fluvial tropical wetlands of the biosphere, in terms of its  
runoff routes were developed. At the end of the extension and diversity of both animals and plants.  
Pliocene, water excesses were concentrated in these The toponymy referred to “waters that shine” (Y verá  
depressed lands, initiating its geological activity in in Guarani language). It comprises a complex water  
the current Paraná River. Later tectonic movements system composed of, marshes, shallow lakes and  
accentuated the vertical displacement of the subsoil interconnected river courses (Orfeo & Neiff, 2008).  
blocks, triggering changes in the runoff design of  
The lagoons correspond to extensive and shallow  
surface waters, and being a consequence in the plains fed mainly by the rains (1,200 to 1,500  
province of Corrientes, the Paraná River migrated mm year) and they are one of the most important  
from South to North until it occupied its current wetlands in Latin America due to its extension with  
2
position, which evidences a clear structural control more than 12,000 km . It is located in the central part  
(
Iriondo, 1994). The central depression of the of Corrientes with a major axis NE-SW direction  
Corrientes territory disconnected from the Paraná (Fig. 1), where a complex association of lentic and  
River, in the surrounding of the town of Ituzaingó, lotic environments are vaguely and transitionally  
where the old river valley transformed into a delineated (Neiff, 1997). Its extension into the  
shallow basin, was inefficient to evacuate excess Paraguay Republic “Esteros de Ñeembucú”, bearing  
2
of water. This gave rise to the development of a about 45,000 km , are developed in its western area  
complex association of lentic environments fed and confirms the great influence of the rivers in the  
fundamentally by precipitation and probably by maintainance of its fluvial plains such as the large  
the Paraná River due to subterranean transfluence Paraná (Neiff, 2004).  
(Orfeo, 2005). The plant communities of the study area in the  
Therefore a complex association of lentic and Iberá Wetlands are included in the eastern district  
lotic environments distributed over large areas of of the Chaco province. Its humid sandy plains are  
the Iberá Wetlands in eastern Corrientes developed composed of typical savanna of Andropogon lateralis  
during the Quaternary (Neiff, 1997; Iriondo, 2010), Nees (Poaceae), accompanied by Cyperaceae and  
from which taxonomic works of modern pollen other species of Poaceae, developed in more or less  
grains of floristic biomes carried out mostly in elevated sectors well-drained; in depressions with  
the last decades (e.g. Fernandez Pacella, 2013, slow permeability, this vegetation is sometimes  
2
014). This botanical and ecological information is transformed into marshes (Carnevalli, 1994). Deeper  
728  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
Fig. 1. Map of the western margin of the Iberá Wetland showing the sequence of the lakes studied, and cal  
BP age range for each lake (from Fernandez Pacella & Lara, 2019).  
sand areas (“espartillares”), that are well-drained (Fernandez Pacella et al., 2011, 2013; Fernandez  
soils of pluvial in origin, are colonized by Elionurus Pacella & Lara, 2019) which represented mostly  
muticus (Spreng.) Kuntze (Poaceae), as well as marsh-herbaceous vegetation under humid  
grasslands of Sorghastrum agrostoides (Speg.) condition between 5968-5000 years cal BP. In  
Hitchc., Paspalum sp. and Spartina sp. (Poaceae) agreement with Iriondo (1994), drier conditions  
generally located in floodable soils like streams and were determined from 5000 to 3506 years cal BP  
marshes. The hygrophilous forest (e.g. Poaceae, with a decrease in the species frequency typical of  
Leguminosae) extended over wavy red sands wet environments and increase of xero-halophyte  
(Carnevalli, 1994).  
vegetation. This author pointed out that the  
influence of template climate in Patagonia would  
Paleoenvironment during the Holocene in the study have affected the southern region of Corrientes  
area evidencing changes in landscapes. The clogging of  
Palynomorphs were identified in lacustrine the water body occurred from 3484 years cal BP  
sediments of northwestern of the Iberá Wetlands onwards when herbaceous vegetation dominated.  
729  
Bol. Soc. Argent. Bot. 57 (4) 2022  
The appearance of arboreal pollen indicates the  
Thematerialprocessedandhousedinthelaboratory  
beginning of the modern hygrophilous forest. at the CECOAL (Centro de Ecología Aplicada del  
Those paleoenvironmental changes of alternating Litoral) of CONICET-UNNE (Universidad Nacional  
wetter and drier episodes recorded in this region del Nordeste), in the collection “Dr. Rafael Herbst”.  
are supported by fields of eolian dunes in Iberá  
Wetlands, developed during the drier periods in the 30-50 pollen grains for each taxon, and it was done  
late Holocene (Iriondo, 2010). under optical microscope NIKON ECLIPSE E100  
The morphological description was based on  
The objective of this contribution is to illustrated with a camera Nikon 590CU (40x and  
provide the first morphological documentation of 100x magnification). We followed the classification  
angiosperms, ferns, lycophytes and bryophytes of Curtis et al. (2001) and Raven et al. (1991) for  
from core sediments of six lakes of the Holocene pollen grains, and genera included in the APG VI  
western margin of the Iberá Wetlands. Species from Classification System (2017) and PPG I (2016).  
local versus extra-local vegetation differentiated in Terminology used for descriptions of pollen grains  
the taxonomic description in order to contribute to and spores is based on Kremp (1965), Nilson &  
a better understanding of the floral composition of Praglowski (1992), Punt et al. (2007), and Sáenz  
the Iberá Wetlands and environmental changes yet Laín (2004). The reference collection PAL-CTES  
documented during the Holocene.  
of the UNNE and specialized literature were used  
to identify pollen grains and spores (Acevedo &  
Anzótegui, 1998; Anzótegui & Ferrucci, 1998;  
Anzótegui, 2001; Anzótegui & Caccavari, 2001;  
Anzótegui & Mautino, 2001a, b; Bhattacharya et al.,  
materIalS and methodS  
The taxonomic analysis of pollen grains and 2009; Caccavari & Dome, 2001, 2006; Cuadrado,  
spores presented in this contribution is a new 1998a, b, c; Fernandez Pacella & Canteros, 2014;  
study derived from previous studies carried out by Fernandez Pacella et al., 2014a, b; Fuertes &  
Fernandez Pacella et al. (2011), Fernandez Pacella Rodríguez, 2009; Garralla & Cuadrado, 2001;  
(2013) and Fernandez Pacella & Lara (2019) in Markgraf & D`Antoni, 1978; Pire et al., 2006).  
which paleoenvironmental interpretations based on Local taxa refer to those species that are part  
main palynologic groups addressed. These works of the natural vegetation of the Iberá Wetlands  
included the study of core samples obtained with (Arbo & Tressens, 2002) whereas the extra-local  
a Livingston-type sampler from six lakes in their taxa are those that do not belong to the Iberá. The  
central and deepest parts on the western margin of latter species found in low percentages in the Tilia  
the Iberá Wetlands. The interval studied of each diagrams of the lakes analyzed by Fernandez Pacella  
1
4
core dated by C spans c. 6000 to 3000 Years BP et al. (2011) and Fernandez Pacella & Lara (2019).  
Fig. 1). Samples were taken each 5 cm from five They achieved to depocenters by means of wind  
(
lakes (San Juan, 75 cm, 27º 40´ 0´´ S 57º 11´ 53´´ currents coming from farther regional vegetation  
W; San José, 85 cm, 27º 45´ 47´´ S 57º 13´ 20´´ W; of N, NW and W of Corrientes and E of Chaco  
Lake “C”, 110 cm, 28º 10´ 41´´ S 57º 55´ 42´´ W; (Carnevali, 1994; Fontana, 2018). This is due to the  
Rodeo Porá, 120 cm, 28° 30´ 30´´ S 58° 2´ 3´´ W; Iberá Wetlands was probably a closed basin made up  
San Ignacio, 145 cm, 28° 32´ 32´´ S 58° 28´ 27´´ of an extensive mosaic of lentic bodies fed by rain  
W). From the San Sebastián lake (24 cm, 27º 52´ and without connection with rivers or streams during  
5
8´´ S 57º 20´ 34´´ W) the interval of sampling used the Mid-Late Holocene (Neiff, 2004; Orfeo, 2005).  
was each 2 cm.  
The palynological maceration followed usual  
techniques of Faegri & Iversen (1989), which reSultS  
consisted on deflocculation of clays with (NaPO )  
3
6
1
0%, elimination of humic acids with NaOH 5%,  
Fifty-five palynomorphs were recorded in the  
elimination of carbonates with HCl 10%, separation study area of the Iberá Wetlands. Forty-six of them  
of organic matter from inorganic material with are pollen types corresponding to 27 families of  
heavy liquids (ZnCl ) and elimination of silicates angiosperms and nine trilete spore-types of ferns,  
2
with HF.  
lycophytes, and bryophytes that are described and  
730  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
illustrated (Figs. 2-5). In the taxonomic description, Amaryllidaceae (Liliopsida, Asparagales)  
helpful information to differentiate local and extra- Crinum americanum L., Sp. Pl. 1: 292. 1753. Fig.  
local taxa for each site studied is included (Table 1).  
The 46 recorded species with pollen are listed  
alphabetically by family:  
2G.  
Morphology: Monosulcate pollen grain, radial  
symmetry. Small size, suboblate, (PA) 12-15 µm,  
EA) 16-18 µm. Heteropolar. Sulcus 2 x 4 µm. Exine  
2 µm thick, sexine tectate, microechinate of ca. 1 μm  
(
Acanthaceae (Magnoliopsida, Lamiales)  
Justicia brasiliana Roth, Nov. Pl. Sp.: 17. 1821. (Medeanic et al., 2008).  
Fig. 2A-C. Ecological procedence: herbaceous local species  
Morphology: Diporate pollen grain, radial well represented in marshes of the natural vegetation  
symmetry. Circular amb, (PA) 17-84 µm, prolate of the Iberá Wetlands (Boelcke, 1992; Arbo &  
EA) 14-43 µm. Lalongate endoapertures, 2-7 µm Tressens, 2002).  
diam. Exine 1-5 µm thick, thinner in apertural area,  
.5-1 μm thick, sexine semitectate, reticulated, Anacardiaceae (Magnoliopsida, Sapindales)  
(
0
heterobrocate reticulum, with straight or sinuous Myracrodruon balansae (Engl.) Santin, Revista  
walls and circular or polygonal lumens. Surrounding Brasil. Bot. 14: 135. 1991. Fig. 2H, I.  
the aperture differentiate and contain 2-6 rows of  
-10 islands (Pire et al., 2006).  
Morphology: Tricolporate pollen grain, radial  
symmetry. Subtriangular amb, subprolate, (PA) 21-28  
4
Ecological procedence: grass or shrub well µm, (EA) 16-24 µm. Isopolar. Colpi 2.5 μm wide, ribs  
represented in forests of S. balansae and M. 1.4-2 μm thick, lalongate endoapertures 1.4-2.1 x 7-10  
balansae, corresponding to extra-local taxa of μm. Exine 1.4 µm thick. Sexine semitectate. Surface  
Corrientes (Fontana, 2018). Native species of striate, short and wide striations lesser than 2.5 μm in  
Chacoan and Paranaense floristic provinces (Anton length, and larger than 1.7 μm in width, walls 0.5 μm  
&
Zuloaga, 2021).  
wide and 0.2-0.3 μm high (Anzótegui, 2001).  
Ecological procedence: native extra-local tree  
represented in forests of S. balansae and M. balansae,  
Amaranthaceae (Magnoliopsida, Caryophyllales)  
Amaranthus muricatus (Moq.) Hieron., Bol. of the natural vegetation of Corrientes (Boelcke,  
Acad. Nac. Ci. 4: 421. 1882. Fig. 2D. 1992; Fontana, 2018) and other region of Chacoan  
Morphology: Pantoporate pollen grain, radial and Paranaense floristic provinces (Anton & Zuloaga,  
symmetry, spheroidal, small size, diameter 19- 2021).  
2
2 µm. Apolar. Circular pores, 28-45, with thick  
margin, distributed all over the grain surface, Schinopsis balansae Engl., Bot. Jahrb. Syst. 6: 286.  
-2 μm in diameter. Exine 1.2 a 1.5 µm thick. 1885. Fig. 2J.  
Microreticulate (Cuadrado, 1998a). Morphology: Tricolporate pollen grain, radial  
1
Ecological procedence: herbaceous species symmetry. Prolate, (PA) 32-35 µm, (EA) 24-27 µm.  
frequent in natural grasslands of the Iberá Wetlands Isopolar. Colpi 1-2.5 μm maximum equatorial in  
(
Arbo & Tressens, 2002) and mainly in North- width, acute or blunt apices, ribs 1.4-3.5 μm thick at  
central Argentina (Anton & Zuloaga, 2021).  
the equator. Lalongate endoapertures 3-4 x 7-8 μm.  
Exine 0.7-2 µm thick. Surface striate, long striations,  
Gomphrena perennis L., Sp. Pl. 1: 224. 1753. Fig. longer than 2.5 μm and 1 μm or less in width, walls  
2
E, F.  
Morphology: Pantoporate pollen grain, radial  
slightly taller than 0.5 μm in height (Anzótegui, 2001).  
Ecological procedence: native extra-local species  
symmetry. Spheroidal, 14-22 µm. Apolar. Pores of the natural vegetation of Corrientes in forests of S.  
0-37, 1.2-2.3 μm diam. Exine 1.5-3.5 µm thick, balansae and M. balansae (Fontana, 2018) belonging  
metareticulate, with hexagonal elements (Cuadrado, to the Chacoan floristic province (Anton & Zuloaga,  
998a). 2021).  
Ecological procedence: herbaceous species in  
grasslands of the Iberá Wetlands (Arbo & Tressens, Schinus longifolia (Lindl.) Speg., Cat. Descr.  
002), and North-central region of Argentina Maderas: 413. 1910. Fig. 2K.  
Anton & Zuloaga, 2021). Morphology: Tricolporate pollen grain, radial  
3
1
2
(
731  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Fig. 2. Pollen of Justicia, Amaranthus, Gomphrena, Crinum, Myracrodruon, Schinopsis, Schinus, Syagrus,  
Alnus, Tecoma, Celtis, Anthemis, Baccharis, Bidens, Conyza, and Gaillardia. A: Justicia brasiliana,  
equatorial view in superior focus (100x). B: Equatorial view in optical section (100x). C: Equatorial view  
in optical section (100x). D: Amaranthus muricatus, general view in superior focus where endoapertures  
are appreciated (100x). E: Gomphrena perennis, general view in optical section (100x). F: General view  
in superior focus (100x). G: Crinum americanum, polar view in optical section (100x). H: Myracrodruon  
balansae, equatorial view in superior focus (100x). I: Equatorial view in optical section (100x). J: Schinopsis  
balansae, equatorial view in optical section (100x). K: Schinus longifolia, equatorial view in optical section  
(100x). L: Syagrus romanzoffiana, polar view in optical section (100x). M: Alnus acuminata, polar view in  
optical section (100x). N: Tecoma stans, polar view in optical section (100x). O: Celtis iguanaea, equatorial  
view (100x). P: Anthemis cotula, polar view in superior focus (100x). Q: Baccharis trimera, polar view in  
optical section (100x). R: Bidens subalternans, polar view (100x). S: Conyza pampeana, polar view in  
superior focus (100x). T: Gaillardia megapotamica, equatorial view (100x). Scales= 10 µm.  
732  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
Table 1. Pollen and spores procedence for each site studied. Abreviatures= L: local taxa; EL: extra-local  
taxa.  
San  
Ignacio Porá  
Rodeo Lake  
San  
San  
José  
San  
Juan  
Species or genus  
Alnus acuminata  
Procedence  
“C” Sebastián  
L
L
X
X
X
X
X
Amaranthus muricatus  
Anadenanthera colubrina  
Anthemis cotula  
X
X
X
X
X
X
X
X
X
X
X
X
X
EL  
L
X
X
X
X
X
X
X
X
X
Anthoceros aff. lamellatus  
Baccharis trimera  
L
L
X
X
X
X
X
X
Bidens subalternans  
Calliandra parvifolia  
Celtis iguanaea  
L
X
EL  
L
X
X
X
X
X
X
X
Chrysophyllum marginatum  
Cissus verticillata  
L
X
L
X
X
X
X
X
X
X
X
X
X
X
Conyza pampeana  
L
X
X
X
Crinum americanum  
Cyathea aff. atrovirens  
Cypella herbertii  
L
X
L
X
X
X
X
X
L
X
X
X
X
X
X
X
X
X
X
X
Cyperus rotundus  
L
X
X
X
X
X
X
X
X
X
Echinochloa crus-galli  
Echinochloa polystachya  
Empetrum aff. rubrum  
Eryngium elegans  
L
L
L
L
X
X
X
X
X
X
X
Gaillardia megapotamica  
Gomphrena perennis  
Gutierrezia resinosa  
L
L
L
X
X
X
X
X
X
X
X
X
X
Hymenachne  
pernambucensis  
L
X
X
X
X
Imperata brasiliensis  
Jamesonia flexuosa  
Justicia brasiliana  
L
L
X
X
X
X
X
X
X
X
X
X
X
EL  
L
X
X
X
Ludwigia peploides  
Mikania cordifolia  
X
X
X
X
L
Myracrodruon balansae  
Myrcianthes pungens  
Myriophyllum aquaticum  
Pellaea sp.  
EL  
EL  
L
X
X
X
X
X
X
L
X
Phaeoceros bulbiculosus  
Phaeoceros tenuis  
L
X
X
X
X
L
Phlegmariurus aff.  
mandiocanus  
L
X
X
X
Phyllostylon rhamnoides  
Pisonia aculeata  
EL  
EL  
X
X
X
X
X
733  
Bol. Soc. Argent. Bot. 57 (4) 2022  
San  
Ignacio Porá  
Rodeo Lake  
San  
San  
José  
San  
Juan  
Species or genus  
Plinia rivularis  
Procedence  
“C” Sebastián  
L
L
X
X
X
X
Polygala leptocaulis  
Polygonum acuminatum  
Polygonum convolvulus  
Prosopis alba  
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
X
L
EL  
EL  
EL  
L
X
X
Schinopsis balansae  
Schinus longifolia  
X
X
X
X
X
X
X
X
X
Selaginella aff. marginata  
Senecio bonariensis  
Senegalia bonariensis  
Serjania perulacea  
Sphagnum sp.  
X
X
L
L
X
EL  
L
X
X
X
X
X
X
X
Syagrus romanzoffiana  
Tecoma stans  
EL  
L
X
X
X
X
Thinouia mucronata  
Trichilia elegans  
L
X
X
X
X
EL  
L
X
X
X
Typha domingensis  
X
symmetry. Prolate, (PA) 18-21 µm, (EA) 14-16 µm. Mainly endemic of Pampean and Paranaense floral  
Isopolar. Colpi 1-2.5 μm wide, with 1.4-3.5 μm provinces (Anton & Zuloaga, 2021).  
thick ribs at the equator limited by a small psilate  
margin of 2 μm wide. Endoapertures 1.4 x 4 µm in Betulaceae (Magnoliopsida, Fagales)  
size. Exine 0.7-2.5 µm thick. Surface striate, long Alnus acuminata Kunth, Nov. Gen. Sp. (quarto  
striations, approximately more than 2.5 μm long ed.) 2: 20. 1817. Fig. 2M.  
(Anzótegui, 2001).  
Morphology: Pentazonoporate pollen grain of  
Ecological procedence: extra-local shrub or radial symmetry. Medium size, pentagonal amb  
tree well represented in the natural palm grove (EA) 40-43 µm. Isopolar. Pores 3-5 µm, protrudent  
vegetation of Corrientes (Fontana, 2018) and in and vestibular. Exine 2 µm thick, psilate (Markgraf  
Chacoan and Paranaense floral provinces (Anton & & D`Antoni, 1978).  
Zuloaga, 2021).  
Ecological procedence: extra-local tree  
represented in forests of S. balansae and M.  
balansae of Corrientes (Boelcke, 1992; Fontana,  
Arecaceae (Liliopsida, Arecales)  
Syagrus romanzoffiana (Cham.) Glassman, 2018).  
Fieldiana, Bot. 31: 382. 1968. Fig. 2L.  
Morphology: Monosulcate pollen grain, bilateral Bignoniaceae (Magnoliopsida, Lamiales)  
symmetry. Medium size, oblate, (PA) 15-17 µm, Tecoma stans (L.) Juss. ex Kunth, Nov. Gen. Sp.  
(
EA) 37-39 µm. Heteropolar. Sulcus 35.4 μm long. (quarto ed.) 3: 144. 1819. Fig. 2N.  
The exine is 1.6 μm thick, sexine tectate and psilate Morphology: Brevicolpate pollen grain, radial  
Trigo & Fernández, 1995; Bauermann et al., 2010). symmetry. Subtriangular amb, (EA) 48-52 µm.  
Ecological procedence: extra-local arboreal Isopolar. Exine 3 µm thick, sexine semitectate.  
species well represented in small palm stocks and Microreticulate (Markgraf & D`Antoni, 1978).  
riparian natural vegetation in Corrientes (Boelcke, Ecological procedence: shrub or small tree  
992; Carnevalli, 1994; Cabral & Castro, 2007). represented in the natural vegetation of the Iberá  
(
1
734  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
Wetlands in hygrophilous forests (Fontana, 2018). 27-28 µm. Isopolar. Exine 2.5-3 µm thick, sexine  
Native of North-central region of Argentina (Anton tectate, echinate, spines 7-7.5 µm (Markgraf &  
&
Zuloaga, 2021).  
D`Antoni, 1978).  
Ecological procedence: herbaceous taxon  
presents in grasslands of the Iberá Wetlands (Arbo  
Celtidaceae (Magnoliopsida, Rosales)  
Celtis iguanaea (Jacq.) Sarg., Silva 7: 64. 1895. & Tressens, 2002).  
Fig. 2O.  
Morphology: Triporate pollen grain, radial Conyza pampeana (Parodi) Cabrera, Man. Fl. Al.  
symmetry. Subtriangular to circular amb, suboblate, Buenos Aires: 481. 1953. Fig. 2S.  
(
PA) 9-30 µm, (EA) 11-32 µm. Isopolar. Pores  
Morphology: Tricolporate pollen grain of radial  
slightly sunken, circular 1-2 μm in diam., limited symmetry. Prolate to subcircular, (PA) 25-27 µm,  
by a ring 0.5-2 μm thick. Exine 0.5-1.4 µm thick. (EA) 21-24 µm. Isopolar. Exine 4 µm thick. Sexine  
Sexine tectate. Scabrate (Anzótegui & Mautino, tectate, echinate, spines 2 µm (Medeanic et al.,  
2
001a).  
Ecological procedence: shrub (creep) or tree  
2008).  
Ecological procedence: this genus is well  
represented in hygrophilous forests of the Iberá represented in the natural vegetation of the Iberá  
Wetlands and extra-local forests of S. balansae and Wetlands in grasslands (Arbo & Tressens, 2002).  
M. balansae in Corrientes (Arbo & Tressens, 2002;  
Fontana, 2018). Native of central-northern region Gaillardia megapotamica (Spreng.) Baker, Fl.  
of Argentina (Anton & Zuloaga, 2021).  
Bras. 6: 276. 1884. Fig. 2T.  
Morphology: Tricolporate pollen grains of radial  
symmetry. Medium, suboblate, (PA) 27-30 µm,  
(EA) 34-37 µm. Isopolar. Exine 2 µm thick, sexine  
Compositae (Magnoliopsida, Asterales)  
Anthemis cotula L., Sp. Pl. 2: 894. 1753. Fig. 2P.  
Morphology: Tricolporate pollen grains of radial tectate, echinate, with spines 4 µm long (Markgraf  
symmetry. Spheroidal, (PA) 23-24 µm, (EA) 22-23 & D`Antoni, 1978).  
µm. Isopolar. Exine 4.5 µm thick. Sexine tectate,  
echinate, spines 4 to 5 μm (Alonso, 2014).  
Ecological procedence: perennial grass or  
subshrub well represented in grasslands of the Iberá  
Ecological procedence: herbaceous local taxon Wetlands (Arbo & Tressens, 2002).  
in grasslands of the Iberá Wetlands (Boelcke, 1992;  
Arbo & Tressens, 2002) in Corrientes and widely Gutierrezia resinosa (Hook. & Arn.) S. F. Blake,  
present in southern South America (Anton & Contr. U.S. Natl. Herb. 26: 232. 1930. Fig. 3A.  
Zuloaga, 2021).  
Morphology: Tricolporate pollen grain, radial  
symmetry. Small size, spheroidal, (PA) 14-18 µm,  
Baccharis trimera (Less.) DC., Prodr. 5: 425. (EA) 14-18 µm. Isopolar. Exine 2 µm thick. Sexine  
836. Fig. 2Q. tectate, echinate, spines 1.5 µm long (Markgraf &  
Morphology: Tricolporate, radial symmetry. D`Antoni, 1978).  
Spheroidal, (PA) 15-16 µm, (EA) 14-15 µm. Ecological procedence: Gutierrezia Lag. is  
1
Isopolar. Exine 4 µm thick. Sexine tectate, echinate, present in natural grasslands of the Iberá Wetlands  
spines 2-2.5 µm long (Markgraf & D`Antoni, (Arbo & Tressens, 2002).  
1
978).  
Ecological procedence: this genus is well Mikania cordifolia (L. f.) Willd., Sp. Pl. 3: 1746.  
represented in natural grassland vegetation of 1803. Fig. 3B.  
the Iberá Wetlands (Arbo & Tressens, 2002) and  
Morphology: Tricolporate pollen grains of radial  
in North-central region of Argentina (Anton & symmetry. Medium size, subprolate (PA) 27-30 µm,  
Zuloaga, 2021).  
(EA) 22-25 µm. Isopolar. Exine 1 µm thick, sexine  
tectate, echinate, spines 2 µm (Ybert et al., 2016).  
Ecological procedence: perennial creeper well  
represented in hygrophilous forest vegetation of  
Bidens subalternans DC., Prodr. 5: 600. 1836.  
Fig. 2R.  
Morphology: Tricolporate pollen grain, radial Iberá Wetlands (Arbo & Tressens, 2002), as well  
symmetry. Oblate-spheroidal, (PA) 26-28 µm, (EA) as in forests, savannas, riparian banks of rivers  
735  
Bol. Soc. Argent. Bot. 57 (4) 2022  
and streams of South America (Anton & Zuloaga, Iberá Wetlands (Arbo & Tressens, 2002) also  
2
021).  
present in central-northern region of Argentina  
Anton & Zuloaga, 2021).  
(
Senecio bonariensis Hook. &Arn., J. Bot. (Hooker)  
: 340. 1841. Fig. 3C.  
Morphology: Tricolporate pollen grain, radial Cypella herbertii Herb., Bot. Mag. 53: sub t. 2637.  
symmetry. Circular in (PA) 28-40 µm, prolate in 1826. Fig. 3H.  
EA) 16-35 µm. Isopolar. Exine 2-5 µm thick. Morphology: Monosulcate pollen grain and  
Sexine tectate, echinate, spines 2-3 µm (Markgraf bilateral symmetry. Heteropolar, suboblate, (PA)  
D`Antoni, 1978). 40-54 µm, (EA) 45-61 µm. Sulcus 35-54 µm  
Ecological procedence: Senecio L. is well long. Exine 1-2.2 μm thick, sexine semitectate and  
represented in the natural vegetation of the Iberá microreticulate (Salgado, 2006).  
3
Iridaceae (Liliopsida, Asparagales)  
(
&
Wetlands in marsh and grassland, corresponding  
Ecologic procedence: bulbous herbaceous local  
to local taxa (Arbo & Tressens, 2002) and present species in marsh areas (Boelcke, 1992; Arbo  
in Chacoan, Paranaense and Pampean floristic & Tressens, 2002). Endemic of Pampean and  
provinces (Anton & Zuloaga, 2021).  
Paranaense floral provinces (Anton & Zuloaga,  
021).  
2
Cyperaceae (Liliopsida, Poales)  
Cyperus rotundus L., Sp. Pl. 1: 45. 1753. Fig. 3D. Leguminosae, Mimosoideae (Magnoliopsida,  
Morphology: Monoporate pollen grain and radial Fabales)  
symmetry. Heteropolar, prolate, (PA) 27-37 µm, Calliandra parvifolia (Hook. & Arn.) Speg.,  
(EA) 16-24 µm. Exine 1.5 µm thick, ornamentation Revista Argent. Bot. 1: 193. 1926. Fig. 3I.  
granular (Fernandez, 1987). Morphology: Polyads 185 x 112 μm diam.  
Ecological procedence: perennial marsh grass usually of 8 pollen grains. Exine 2 µm thick,  
well represented in the natural vegetation of the rugulate (Markgraf & D`Antoni, 1978).  
Iberá Wetlands (Arbo & Tressens, 2002).  
Ecological procedence: extra-local shrub  
represented in the natural vegetation of Corrientes  
province in forests of S. balansae and M. balansae  
Ericaceae (Magnoliopsida, Ericales)  
Empetrum aff. rubrum Vahl ex Willd., Sp. Pl. 4: (Fontana, 2018).  
7
13. 1806. Fig. 3E, F.  
Morphology: Tetrad with tricolporate pollen Anadenanthera colubrina (Vell.) Brenan, Kew  
grain, radial symmetry. Small, circular-subcircular, Bull. 10: 182. 1955. Fig. 3J.  
(
(
EA) 19-22 µm. Isopolar. Exine 2 µm thick  
Markgraf & D`Antoni, 1978).  
Morphology: Polyads spheroidal to ellipsoidal  
of 12 pollen grains irregularly arranged, or of 16  
Ecological procedence: subshrub represented pollen grains regularly arranged. Exine 1.3 µm  
in marshes of the natural vegetation of the Iberá thick. Verrucate, 1 μm diam. warts (Caccavari &  
Wetlands (Carnevalli, 1994; Arbo & Tressens, Dome, 2006).  
2
002).  
Ecological procedence: extra-local tree  
represented in forests of S. balansae and M.  
balansae of Corrientes province (Fontana, 2018).  
Haloragaceae (Magnoliopsida, Saxifragales)  
Myriophyllum aquaticum (Vell.) Verdc., Kew  
Bull. 28: 36. 1973. Fig. 3G.  
Prosopis alba Griseb., Abh. Königl. Ges. Wiss.  
Morphology: Tetrazonoporate pollen grain with Göttingen 19: 131. 1874. Fig. 3K.  
radial symmetry. Subcircular-angular amb, oblate  
Morphology: Tricolporate pollen grain of radial  
to spheroidal (PA) 29-38 µm, (EA) 34-41 µm. symmetry. Small to medium size, prolate, (PA)  
Pores 4-5 μm diam., protrudent, with thickening of 22-36 µm, (EA) 18.5-33 µm. Isopolar. Long colpi  
the endexine. Exine 1.5 µm thick. Sexine tectate, 17-30 µm and pores 4-6 μm diam. Exine 1-2 µm  
scabrate (Díez Dapena, 1988).  
Ecological procedence: perennial aquatic herb al., 2014b).  
well represented in the natural vegetation of the Ecological procedence: extra-local tree  
thick, sexine tectate, scabrate (Fernandez Pacella et  
736  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
Fig. 3. Pollen of Gutierrezia, Mikania, Senecio, Cyperus, Empetrum, Myriophyllum, Cypella, Calliandra,  
Anadenanthera, Prosopis, Senegalia, Trichilia, Myrcianthes, and Plinia. A: Gutierrezia resinosa, equatorial  
view in optical section (100x). B: Mikania cordifolia, polar view in optical section (100x). C: Senecio  
bonariensis, polar view in optical section (100x). D: Cyperus rotundus, equatorial view in optical section  
(
100x). E: Empetrum aff. Rubrum, poliade in optical section (100x). F: Poliade in superior focus (100x). G:  
Myriophyllum aquaticum, polar view in superior focus (100x). H: Cypella herbertii, polar view in optical section  
100x). I: Calliandra parvifolia, poliade (100x). J: Anadenanthera colubrina, poliade (100x). K: Prosopis alba,  
(
polar view in superior focus (100x). L: Senegalia bonariensis, poliade (100x). M: Trichilia elegans, equatorial  
view in optical section (100x). N: Equatorial view in superior focus (100x). O: Myrcianthes pungens, polar  
view in superior focus (100x). P: Plinia rivularis, polar view in superior focus (100x). Scales= 10 µm.  
represented in forests of S. balansae and M.  
Morphology: Polyads of 16 pollen grains with  
balansae of Corrientes (Boelcke, 1992; Fontana, regular arrangement, major axis (34-42 μm), minor  
2018).  
axis (22-30 μm). Exine 1.55-2.55 µm thick. Sexine  
tectate. Infratectum with columellae 0.5-0.9 μm  
Senegalia bonariensis (Gillies ex Hook. & Arn.) long. Ornamentation slightly granulate (Caccavari  
Seigler & Ebinger, Phytologia 88: 50. 2006. Fig. 3L. & Dome, 2001).  
737  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Ecological procedence: tree or shrub present Exclusive of Entre Ríos, Corrientes and Misiones  
in hygrophilous forests of the Iberá Wetlands belonging to the Paranaense floristic province  
(Boelcke, 1992; Fontana, 2018).  
(Anton & Zuloaga, 2021).  
Meliaceae (Magnoliopsida, Sapindales)  
Nyctaginaceae (Magnoliopsida, Caryophyllales)  
Trichilia elegans A. Juss., Fl. Bras. Merid. Pisonia aculeata L., Sp. Pl. 2: 1026. 1753. Fig.  
(
quarto ed.) 2: 79, t. 98. 1829. Fig. 3M, N.  
Morphology: Tetracolporate pollen grain,  
4A, B.  
Morphology: Tricolporate pollen grain of  
radial symmetry. Small size, quadrangular radial symmetry. Medium size, prolate, (PA) 34-  
amb (PA) 17-25 µm, subprolate (EA) 14-21 37 µm, (EA) 24-27 µm. Isopolar. Colpi 32-35 μm  
µm. Isopolar. Colpi 15-22 μm long, lalongate long. Pores 2-3 μm diam. Exine 1-1.5 µm thick,  
endoapertures with ring thickening 1.4-3 μm sexine semitectate, microreticulate (Oliveira &  
thick. Exine 1.4 μm thick and microreticulate Santos, 2014).  
ornamentation (Oliveira & Santos, 2014).  
Ecological procedence: shrub or creeper  
Ecological procedence: extra-local tree species present in natural forests of Schinopsis  
represented in forests of S. balansae and M. balansae Engl. and Myracrodruon balansae  
balansae of the natural vegetation of Corrientes (Engl.) Santin in Corrientes province (extra-local  
(
&
Fontana, 2018) and noreastern Argentina (Anton taxon) (Carnevalli, 1994; Fontana, 2018), and  
Zuloaga, 2021). northern region of Argentina (Anton & Zuloaga,  
021).  
2
Myrtaceae (Magnoliopsida, Myrtales)  
Myrcianthes pungens (O. Berg) D. Legrand, Onagraceae (Magnoliopsida, Myrtales)  
Bol. Fac. Agron. Univ. Montevideo 101: 52. Ludwigia peploides (Kunth) P.H. Raven,  
1
968. Fig. 3O.  
Reinwardtia 6: 393 1963[1964]. Fig. 4C.  
Morphology: Parasintricolporate pollen  
Morphology: Tricolporate pollen grain,  
grain, radial symmetry. Small size, triangular, radial symmetry. Large size, subtriangular amb,  
oblate, (PA) 9-17 µm, (EA) 12-21 µm. Isopolar. subprolate, (PA) 94-108 µm, (EA) 74-86 µm.  
Narrow or wide colpi an apocolpial field or Isopolar. Colpi 18 x 4 µm, endoapertures 20 x 16  
island, of triangular form. Apocolpial fields with µm protrudent-vestibuled. Exine 3-4 µm thick.  
edges and are of different sizes in both poles. The surface of the ridges is rugulate-striated. The  
Endoapertures 1.4-2 μm. Exine 0.7-3 µm thick, area between the ridges has an uneven coarse  
sexine semitectate, microreticulate (Acevedo & rugulate appearance, due to the presence of  
Anzótegui, 1998).  
irregular striae (Cecotti Álvarez et al., 2017).  
Ecological procedence: the natural vegetation  
Ecological procedence: aquatic herbaceous  
of Corrientes province in forests of S. balansae taxon well represented in fresh water bodies  
and M. balansae (Boelcke, 1992; Fontana, 2018). of the Iberá Wetlands (Boelcke, 1992; Arbo  
Native of North-central region of Argentina & Tressens, 2002). Native of central-northern  
(
Anton & Zuloaga, 2021). region of Argentina (Anton & Zuloaga, 2021).  
Plinia rivularis (Cambess.) Rotman, Bol. Soc. Poaceae (Liliopsida, Poales)  
Argent. Bot. 24: 195. 1985. Fig. 3P.  
Echinochloa crus-galli (L.) P. Beauv., Ess.  
Morphology: Parasyntricolporate pollen grain, Agrostogr. 1: 53, 161, 169, pl. 11, f. 2. 1812. Fig.  
radial symmetry. Triangular amb, oblate, (PA) 4D.  
1
3-17 µm, (EA) 19-28 µm. Isopolar. Linear colpi,  
Morphology: Monoporate pollen grain and  
less than 1 μm wide, lalongate endoapertures 1 radial symmetry. Spheroidal amb, (PA) 46-49  
x 2.3 µm. Exine 0.7-2 µm thick. Sexine tectate. µm, (EA) 46-49 µm. Heteropolar. Pore 2 μm  
Psilate (Acevedo & Anzótegui, 1998).  
in diameter, with annulus 1 µm thick. Exine  
Ecological procedence: tree well represented 2 µm thick. Sexine tectate, psilate to scabrate  
in hygrophilous forests of the Iberá Wetlands (Fernandez Pacella & Canteros, 2014).  
(
Boelcke, 1992; Arbo & Tressens, 2002).  
Ecological procedence: herbaceous species in  
738  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
marsh and grasslands of natural vegetation of the Amer. 1: 130. 1838. Fig. 4H.  
Iberá Wetlands (Boelcke, 1992; Arbo & Tressens, Morphology: Pantozonocolporate pollen grain  
002) and widely distributed in Argentina (Anton with radial symmetry. Subcircular amb (PA)  
2
&
Zuloaga, 2021).  
20-30 µm, subprolate amb (EA) 18-21 µm.  
Isopolar. Colpi 8-15, 17-25 μm long. Lalongate  
Echinochloa polystachya (Kunth) Hitchc., endoaperture 2 x 4 µm. Exine 0.7-2.5 µm thick.  
Contr. U.S. Natl. Herb. 22: 135. 1920. Fig. 4E.  
Sexine tectate. Psilate (Cuadrado, 1998c).  
Morphology: Monoporate pollen grain and  
Ecological procedence: herbaceous species  
radial symmetry. Spheroidal amb, (PA) 53-57 well represented in marshes and grasslands of the  
µm, (EA) 60-62 µm. Heteropolar. Pore with Iberá Wetlands (Boelcke, 1992; Arbo & Tressens,  
annulus 2 µm in diameter. Exine 2 µm thick, 2002).  
sexine tectate, psilate to scabrate (Fernandez  
Pacella & Canteros, 2014).  
Ecological procedence: herbaceous taxon, Polygonum acuminatum Kunth, Nov. Gen. Sp.  
local of marsh and grasslands in the natural (quarto ed.) 2: 178. 1818. Fig. 4I, J.  
vegetation of the Iberá Wetlands (Arbo &  
Morphology: Triporate pollen grain with radial  
Tressens, 2002). Extra-local species present symmetry. Circular amb, (EA) 59-62 µm. Exine 6  
in Paranense, Chacoan and Pampean floral µm thick. Sexine 1.5-2 µm thick, reticulate, walls  
provinces of Argentina (Anton & Zuloaga, 2021). 1.5 μm thick, simplicolumellate, lumen 10 μm  
wide (Ybert et al., 2018).  
Hymenachne pernambucensis (Spreng.)  
Zuloaga, Amer. J. Bot. 90: 817. 2003. Fig. 4F.  
Ecological procedence: herbaceous species  
well represented in hygrophilous forests of the  
Morphology: Monoporate pollen grain, radial Iberá Wetlands (Fontana, 2018).  
symmetry. Prolate-spheroidal, (PA) 42-44 µm,  
(
EA) 36-39 µm. Heteropolar. Pore 3 µm in Polygonum convolvulus L., Sp. Pl. 1: 364. 1753.  
diameter. Exine 2 µm thick. Sexine tectate, psilate Fig. 4K.  
to scabrate (Fernandez Pacella & Canteros, Morphology: Triporate pollen grain with  
014). radial symmetry. Circular-subcircular amb, (EA)  
Ecological procedence: H. pernambucensis 39-42 µm. Isopolar. Exine 3 µm thick, reticulate,  
2
local genus is well represented in marsh and walls 1 μm thick, simplicolumellate, irregular  
grasslands (Arbo & Tressens, 2002). Present lumen 2 x 2 μm wide (Ybert et al., 2018).  
in Paranense and Chacoan floral provinces of  
Argentina (Anton & Zuloaga, 2021).  
Ecological procedence: herbaceous species  
represented in hygrophilous forests of the Iberá  
Wetlands (Fontana, 2018).  
Imperata brasiliensis Trin., Mém. Acad. Imp.  
Sci. St.-Pétersbourg, Sér. 6, Sci. Math. 2: 331. Sapindaceae (Magnoliopsida, Sapindales)  
832. Fig. 4G. Serjania perulacea Radlk., Consp. Sect. Sp.  
Morphology: Monoporate pollen grain, radial Serjan.: 11. 1874. Fig. 4L, M.  
symmetry. Spheroidal amb, (PA) 21-37 µm, (EA) Morphology: Hemisyntricolporate pollen  
8-33 µm. Heteropolar. Pore 1-4 μm diameter grain, radial symmetry. Subtriangular amb,  
1
1
with a ring 1 to 6 μm thick. Exine 1-3 μm thick, oblate, (PA) 8-40 µm, (EA) 6-58 µm. Heteropolar.  
tectate, psilate to scabrate (Fernandez Pacella & Colpi 1-2 μm wide. Exine 0.7-2.5 µm thick,  
Canteros, 2014).  
sexine semitectate, microreticulate (Anzótegui &  
Ecological procedence: herbaceous species Ferrucci, 1998).  
well represented in marsh and grassland areas  
Ecological procedence: extra-local perennial  
of the natural vegetation of the Iberá Wetlands creeper represented in the forests of Schinopsis  
(
Boelcke, 1992; Arbo & Tressens, 2002).  
balansae and Myracrodruon balansae, natural  
vegetation of Corrientes (Fontana, 2018) and  
other provinces of northern Argentina: Chaco,  
Polygalaceae (Magnoliopsida, Fabales)  
Polygala leptocaulis Torr. & A. Gray, Fl. N. Formosa, Jujuy, Salta (Anton & Zuloaga, 2021).  
739  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Fig. 4. Pollen of Pisonia, Ludwigia, Echinochloa, Hymenachne, Imperata, Polygala, Polygonum, Serjania,  
Thinouia, Chrysophyllum, and Typha. A: Pisonia aculeate, equatorial view in optical section (100x). B:  
Equatorial view in superior focus (100x). C: Ludwigia peploides, polar view in optical section (100x). D:  
Echinochloa crus-galli, equatorial view in superior focus (100x). E: Echinochloa polystachya, equatorial  
view in superior focus (100x). F: Hymenachne pernambucensis, equatorial view in optical section (100x).  
G: Imperata brasiliensis, equatorial view in superior focus (100x). H: Polygala leptocaulis, equatorial view in  
superior focus (100x). I: Polygonum acuminatum, polar view in superior focus (100x). J: Polar view in optical  
section (100x). K: Polygonum convolvulus, polar view in superior focus (100x). L: Serjania perulacea, polar  
view in inferior focus (100x). M: Polar view in superior focus (100x). N: Thinouia mucronata, polar view in  
superior focus (100x). O: Chrysophyllum marginatum, equatorial view in optical section (100x). P: Typha  
domingensis, equatorial view in superior focus (100x). Scales= 10 µm.  
Thinouia mucronata Radlk., Sitzungsber. Math.- to substraight. Isopolar. Colpi (1.4-4 μm wide).  
Phys. Cl. Königl. Bayer. Akad. Wiss. München 8: Lalongate endoapertures 1.4 x 4.3 μm. Exine 1.4-  
2
82. 1878. Fig. 4N. 2.1 thick. Psilate to slightly scabrate (Anzótegui &  
Morphology: Tricolporate pollen grain, radial Ferrucci, 1998).  
symmetry. Subtriangular amb, oblate, (PA) 11- Ecological procedence: local perennial creeper  
7 µm, (EA) 23-27 µm. Sides slightly convex well represented in hygrophilous forest vegetation  
2
740  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
of the Iberá Wetlands (Arbo & Tressens, 2002; Fontana, 2018). Native of Chacoan and Yungas  
Boelcke, 1992) and in northern Argentina (Anton & floristic provinces of Argentina (Anton & Zuloaga,  
Zuloaga, 2021).  
2021).  
Sapotaceae (Magnoliopsida, Ericales)  
Umbeliferae (Magnoliopsida, Apiales)  
Chrysophyllum marginatum (Hook. & Arn.) Eryngium elegans Cham. & Schltdl., Linnaea 1:  
Radlk., Act. Occ. Exp. Univ. Anvers Coin. Exp. Int. 348. 1826. Fig. 5C.  
Hort.: 170. 1887. Fig. 4O.  
Morphology: Tricolporate pollen grain, radial  
Morphology: Tetracolporate pollen grain with symmetry. Prolate, (PA) 28-36 µm, (EA) 18-23  
radial symmetry. Subtriangular amb, prolate, (PA) µm. Isopolar. Narrow and long colpi, relatively  
2
±
0-24 µm, (EA) 14-16 µm. Isopolar. Narrow colpi large pore. Exine 1 µm thick. Sexine semitectate,  
14 μm long. Endoapertures 2 x 3 µm with an perforate, microreticulate (Alonso, 2014).  
annular thickening of 2 μm given by protruding Ecological procedence: local herb in marshes  
endexine. Exine 3 µm thick, columellate infratectal of the Iberá Wetlands (Boelcke, 1992; Arbo &  
layer observed. At the poles, the exine is 2 μm, the Tressens, 2002), and elsewhere in Corrientes  
columellae being longer than the thick of the tectum (Fontana, 2018) and North-central Argentina  
and the nexine 1 μm; at the equator the sexine thins, (Anton & Zuloaga, 2021).  
until approximately 1 μm and the nexine increases  
its thickness to 2 μm. Surface scabrate (Cuadrado, Vitaceae (Magnoliopsida, Vitales)  
1
998b).  
Ecological procedence: shrub or small tree Taxon 33: 727. 1984. Fig. 5D-F.  
well represented in forests of the Iberá Wetlands Morphology: Tricolporate pollen grain, radial  
and Norht-central region of Argentina (Arbo & symmetry. Subtriangular amb, subprolate, (PA)  
Cissus verticillata (L.) Nicolson & C.E. Jarvis,  
Tressens, 2002; Anton & Zuluoga, 2021).  
75-77 µm, (EA) 58-60 µm. Isopolar. Colpi long,  
maximum width of 4.5 μm and ribs 2.8-4.5 μm  
thick at the equator. Lalongate endoapertures 5-8  
Typhaceae (Liliopsida, Poales)  
Typha domingensis Pers., Syn. Pl. 2: 532. 1807. x 3-4 μm to circular 3 μm diam. Exine 2-4 µm  
Fig. 4P.  
Morphology: Monoporate pollen grain, radial  
thick, reticulate (Anzótegui & Caccavari, 2001).  
Ecological procedence: perennial creeper  
symmetry. Spheroidal amb, (PA) 17-20 µm, (EA) represented in hygrophilous forest of the natural  
7-20 µm. Heteropolar. Exine 2.5 μm thick. Sexine vegetation of the Iberá Wetlands (Fontana, 2018)  
columellate, wall 0.25 μm thick, reticulate (Alonso, and in central-northern of Argentina (Anton &  
1
2
014).  
Ecological precedence: robust emergent aquatic  
herbaceous local taxon well represented in marshes  
Zuloaga, 2021).  
The nine recorded species with spores are  
of natural vegetation of the IberáWetlands (Boelcke, listed alphabetically by family:  
992; Arbo & Tressens, 2002).  
1
A n t h o c e ro t a c e a e ( A n t h o c e ro t o p s i d a ,  
Ulmaceae (Magnoliopsida, Rosales)  
Phyllostylon rhamnoides (J. Poiss.) Taub., Oesterr. Anthoceros aff. lamellatus Steph., Sp. Hepat.  
Bot. Z. 11: 409. 1890. Fig. 5A, B.  
(Stephani) 5: 1000. 1916. Fig. 5G, H.  
Morphology: Tetra-pentazonoporate pollen  
Morphology: Trilete spore. Polar view  
grain, radial symmetry. Spheroidal, (PA) 36-39 µm, subtriangular. Laesura with straight rays reaching  
EA) 36-39 µm. Isopolar. Circular pores 1-3 μm in the equator. Exospore 3.5 µm thick, smooth  
(
diam., some of them arranged in a subequatorial inner proximal surface, bacullate distal surface  
plane. Exine 1 µm thick. Psilate to verrucate and equatorial amb. Size: 48-76 µm (Gradstein,  
(
Anzótegui & Mautino, 2001b).  
Ecological procedence: extra-local tree well  
2018).  
Ecological procedence: cosmopolitan genus is  
represented in forests of S. balansae and M. represented on compact rock surfaces exposed to  
balansae of Corrientes province (Boelcke, 1992; light (Peñaloza-Bojacá et al., 2020).  
741  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Cyatheaceae (Polypodiopsida, Cyatheales)  
the equator. Exospore 3.5 µm thick. Granular.  
Cyathea aff. atrovirens (Langsd. & Fisch.) Domin, Size: 48-76 µm (Prieto & Quattrocchio, 1993).  
Rozpr. Kral. Ceske Spolecn. Nauk, Tr. Mat.-Prir. 2:  
62. 1929. Fig. 5I.  
Ecological procedence: cosmopolitan genus is  
represented on compact, moist soil, and on rock in  
2
Morphology: Trilete spore. Polar view moist environments, exposed or partially shaded  
triangular. Laesura 35-40 µm long. Exospore 1.4 microhabitats (Peñaloza-Bojacá et al., 2020).  
µm thick. Psilate or scabrate. Size: 43-53 µm  
(
Contreras-Duarte et al., 2006).  
Ecological procedence: tree to shrub and Jamesonia flexuosa (Kunth) Christenh., Phytotaxa  
herb on soils and rock substrate (rupicolous 19: 21. 2011. Fig. 5M.  
Pteridaceae (Polypodiopsida, Polypodiales)  
species) on roadsides, ravines, in abandoned  
Morphology: Trilete spore. Polar view  
fields, swamps and secondary forests of forests of subtriangular, with rounded angles. Sinuous  
the Iberá Wetlands (Arbo & Tressens, 2002) and laesura, with small coalescent ridges, reaching  
in Corrientes and Misiones provinces (Anton & to the inner margin of the cingulum. Exospore  
Zuloaga, 2021).  
including the cingulum is 5.5 µm thick. Size: 56-71  
µm (Contreras-Duarte et al., 2006; Della & Prado,  
2020).  
Ecological procedence: this taxon is part of the  
natural vegetation of the Iberá Wetlans (Arbo &  
Lycopodiaceae (Lycopodiopsida, Lycopodiales)  
Phlegmariurus aff. mandiocanus (Raddi) B.  
Øllg., Rodriguésia 63: 480. 2012. Fig. 5J.  
Morphology: Trilete spore. Polar view Tressens, 2002) and occurs in humid places inside  
subtriangular, with rounded angles. Lesura with of cloud forest from southern Mexico to Bolivia,  
straight rays reaching to the equator. Exospore 1.6 and north and southeast of Brazil to Uruguay  
µm thick. Psilate on proximal face. Size: 28-38 (Della & Prado, 2020; Della et al., 2020).  
µm. Illustrations of this taxon by Sersic (1983)  
and comparison with other species of the genus Pellaea sp. Fig. 5N  
consulted in Rincón et al. (2014).  
Morphology: Trilete spore. Polar view  
Ecological procedence: epiphyte present in triangular. Rays of the laesurae straight, 2/3 of  
hygrophilous forests of Yungas and Paranaense radius to almost the internal margin of cingulum.  
floral provinces in Argentina (Anton & Zuloaga, Exospore cingulum surrounds the spore, 5.4 μm  
2
021; Windisch et al., 2015).  
thick. Central part of distal face verrucate/rugulate,  
low warts occasionally joined forming loins. Size:  
N ot ot hy l adac e ae (A nt hoc e rot opsi da, 37-48 µm.  
Comparisons: few specimens recorded herein  
Phaeoceros bulbiculosus (Brot.) Prosk., Rapp. are similar to Pellaea cordifolia (Sessé & Moc.)  
Comm., VIII Congr. Int. Bot.: 69. 1954. Fig. 5K.  
A.R. Sm. (Arreguín-Sánchez et al., 1996; Pérez-  
Morphology: Trilete spore. Polar view Jiménez et al., 2020) and Pellaea ovata (Desv.)  
subtriangular. Laesura with straight rays reaching Weath. (Gómez et al., 2013) differing in having  
the equator. Exospore 2.3 µm thick. Granular/ smooth proximal and less ornamented distal face.  
gemmate sculpture. Size: 32-38 µm. Illustrated  
from Argentina (Morbelli et al., 2010).  
Ecological procedence: this genus is including  
terrestrial or rupicolous species, some of humid  
Ecological procedence: cosmopolitan genus is shaded areas of hygrophilous forests and others  
represented on compact, moist soil, and on rock in tolerate slight exposition to light in open areas.  
moist environments, exposed or partially shaded Particularly, Pellaea cordifolia and P. ovata (Hirai  
microhabitats (Peñaloza-Bojacá et al., 2020).  
& Prado, 2021) are known in South America  
Anton & Zuloaga, 2021; Arbo & Tressens, 2002).  
(
Geobot. Inst. ETH Stiftung Rübel Zürich 91: 303. Selaginellaceae (Lycopodiopsida, Selaginellales)  
986. Fig. 5L. Selaginella aff. marginata (Humb. & Bonpl. ex  
Morphology: Trilete spore. Polar view Willd.) Spring, Flora 21: 194. 1838. Fig. 5O.  
subtriangular. Laesura with straight rays reaching Morphology: Trilete microspore. Polar view  
1
742  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
Fig. 5. Palynomorphs of Phyllostylon, Eryngium, Cissus, Anthoceros, Cyathea, Phlegmariurus, Phaeoceros,  
Jamesonia, Pellaea, and Sellaginella. A: Phyllostylon rhamnoides, general view in superior focus (100x).  
B: General view in optical section (100x). C: Eryngium elegans, equatorial view in optical section (100x).  
D: Cissus verticillata, equatorial view in optical section (100x). E: Equatorial view in superior focus (100x).  
F: Equatorial view where apertures are appreciated (100x). G: Anthoceros aff. Lamellatus, polar view in  
optical section (100x). H: Polar view where the trilete is appreciated (100x). I: Cyathea aff. Multiflora, polar  
view in superior focus (100x). J: Phlegmariurus aff. Mandiocanus, polar view in superior focus (100x). K:  
Phaeoceros bulbiculosus, polar view in optical section (100x). L: Phaeoceros tenuis, polar view in superior  
focus (100x). M: Jamesonia flexuosa, polar view in superior focus (100x). N: Pellaea sp., polar view in  
optical section (100x). O: Selaginella aff. Marginata, polar view where the trilete is appreciated (100x). P:  
Sphagnum sp., polar view in optical section (100x). Scales= 10 µm.  
subtriangular. Laesura with straight rays reaching Argentina (Morbelli, 1977; Morbelli et al., 2001)  
to the equator. Exospore thin 1-2 μm thick. and from Brazil (Lorscheitter et al., 1998).  
Baculate with less frequent spinose and verrucate  
Ecological procedence: perennial herbaceous  
ornamentation. Size: 17-37 µm. Micro-megaspores represented in Selaginella sellowii Hieron. grass of  
belonging to this taxon were described from the natural vegetation of Corrientes (Fontana, 2018).  
743  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Sphagnaceae (Sphagnopsida, Sphagnales)  
aquaticum and Ludwigia peploides, which integrate  
Sphagnum sp. Fig. 5P.  
marsh grasslands and hygrophilous communities  
Morphology: trilete spore. Polar view suggesting locally humid conditions in the studied  
subtriangular, with rounded angles. Rays of the area (Fernandez Pacella & Lara, 2019) (Fig. 6).  
laesurae reach the equator. Exospore 2-4.5 μm  
thick. Finely rugged. Size: 20-26 µm (Fuertes & 5800 and 5141 cal year BP is characterized by local  
Rodríguez, 2009). taxa of Poaceae, Cyperaceae, Typha dominguensis,  
A later stage of the Mid Holocene, between  
Ecological procedence: moss well represented Sphagnum sp., representing a characteristic wetland  
in marshes of the natural vegetation of the Iberá association. The presence of Typha suggests  
System (Arbo & Tressens, 2002).  
waterlogged or flooded soils with slow-moving  
water and poor drainage conditions (Cabrera,  
1976; Carnevalli, 1994). These plant communities,  
characteristic of lakes, swampy depressions and low  
floodplains, would indicate for this later stage of  
the Mid Holocene, sub-humid to humid conditions  
dIScuSIon  
Local and extra- local taxa and plant associations (Fernandez Pacella & Lara, 2019) (Fig. 6).  
during the Holocene Between 5141 and 3506 cal year BP was  
The first stage of the Mid Holocene, between characterized by a prevalence of local herbaceous  
990 and 5800 cal year BP is characterized mostly vegetation composed of Anthemis cotula, Conyza  
6
by local taxa such as Imperata brasiliensis, pampeana, Baccharis trimera, Gutierrezia resinosa,  
Echinochloa crus-galli, Echinochloa polystachya, Bidens subalternans, Gaillardia megapotamica,  
Hymenachne pernambucensis, Cyperus rotundus, Senecio bonariensis, Amaranthus muricatus,  
Crinum americanum, Cypella herbertii, Empetrum Eryngium elegans and Poaceae, characteristic of  
aff. rubrum, Polygala leptocaulis, Myriophyllum psammophilous herbaceous steppe (Fig. 6). The  
Fig. 6. Floristic representation of local and extra-local taxa and plant associations during the Holocene.  
LTmg-hc: local taxa-marsh grasslands and hygrophilous communities. LTwa: local taxa-wetland  
association. LTphs: local taxa-psammophilous herbaceous steppe. LThf: local taxa-hygrophilous forest.  
ExT: extra-local taxa.  
744  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
presence of Chenopodiaceae suggests periodic of the understory vegetation. The interpretation of  
desiccation of the water bodies (Tonello & Prieto, “humid forests community” is clearly supported by  
2
008). These results suggest dry environmental the abundance of epiphytes and creeping taxa giving  
conditions (Fernandez Pacella et al., 2011; Fernandez an idea of a jungle type environment (Carnevalli,  
Pacella & Lara, 2019). During this stage, different 1994; Fontana, 2018).  
extra-local species are documented, which indicate  
the beginning of the development of various types Comparison with modern vegetation  
of forests known today as Forests of Schinopsis  
All the species described herein are still part of  
balansaeandMyracrodruonbalansae(“quebrachal”) the flora of Corrientes. For example, Selaginella  
of the humid Chaco phytogeographic region, better aff. marginata present in the Mburucuyá National  
represented in Chaco, Formosa and northern Santa Park (Meza Torres et al., 2013) constitutes the  
Fe provinces, with impoverished remains in the NW herbaceous community of “Selaginella sellowii  
of Corrientes (Fontana, 2018). The main species grass that grows on eroded soils in the open forests  
documented herein are Anadenanthera colubrina, of Schinopsis balansae and Myracrodruon balansae  
Myracrodruon balansae, Calliandra parvifolia, of north-western Corrientes (Bauni & Homberg,  
Myrcianthes pungens, Phyllostylon rhamnoides, 2015; Fontana, 2018). These forests characterized by  
Pisonia aculeata, Prosopis alba, Schinopsis tree and shrubby forms herein documented as well  
balansae, Schinus longifolia, Trichilia elegans, (Anadenanthera colubrina, Myracrodruon balansae,  
Justicia brasiliana and Serjania perulacea. This type Calliandra parvifolia, Myrcianthes pungens,  
of forest develops in highest topographic areas free Phyllostylon rhamnoides, Pisonia aculeata, Prosopis  
of floods characterized by soils with lower moisture alba, Schinopsis balansae, Trichilia elegans, Justicia  
gradients (well-drained) and a higher proportion brasiliana, Serjania perulacea).  
of fine particles (Maldonado & Hohne, 2006;  
Syagrus romanzoffiana and Schinus longifolia  
Morello & Rodríguez, 2009). Among these taxa, represent the extensive palm groves particularly on  
Anadenanthera was recorded from the Miocene to the western coast of the Paraná River in the NW of  
Pliocene in Patagonia and its last record is extended Corrientes. They develop in floodplain valleys of  
into the Holocene of the Iberá Wetland (Fernandez some streams and depressed areas with soils bearing  
Pacella, 2015).  
a high content of fine materials (silt and clays), mixed  
From 3484 cal year BP until the present (Late with sand, brought by the river, generally subjected  
Holocene) the palynologic record shows a prevalence to frequent, non-permanent floods (Fontana, 2018).  
of herbaceous local vegetation composed of marshy  
The local herbaceous taxa Imperata brasiliensis,  
taxa and wetland association (Fig. 6). Local taxa Echinochloa crus-galli, Echinochloa polystachya,  
from the “Hygrophilous Forest”, represented by Hymenachne pernambucense, Cyperus  
Senegalia bonariensis, Celtis iguanaea, Polygonum rotundus, Eryngium elegans, Cypella herbertii,  
acuminatum, Polygonum convolvulus, Cissus Myriophyllum aquaticum, Empetrum aff. rubrum,  
verticillata, Plinia rivularis, Tecoma stans, Polygala leptocaulis, Ludwigia peploides, Typha  
Thinouia mucronata, Chrysophyllum marginatum, dominguensis, Celtis iguanaea, Anthemis cotula,  
Mikania cordifolia, Cyathea atrovirens, Jamesonia Conyza pampeana, Baccharis trimera, Mikania  
flexuosa, Phlegmariurus mandiocanus, Pellaea sp., cordifolia, Gutierreziaresinosa, Bidenssubalternans,  
Phaeoceros tenuis and Phaeoceros bulbiculosus Gaillardia megapotamica, Senecio bonariensis,  
also documented in variable frequency (Fernandez Amaranthus muricatus and Sphagnum sp., are  
Pacella et al., 2011; Fernandez Pacella & Lara, currently part of the hygrophilous communities of  
2019). This Hygrophilous Forest developed in this marsh- grasslands, wetlands and psammophilous  
interval, forms a strip that extends along small herbaceous steppe of the Iberá Wetland (Arbo &  
floodplain valleys close to “madrejones” or ponds Tressens, 2002).  
with reservoirs, sometimes superimposed on the  
Senegalia bonariensis, Polygonum acuminatum,  
grasslands (Eskuche, 2004; Garcia et al., 2013). Polygonum convolvulus, Cissus verticillata, Plinia  
It is characterized by low to medium trees in less rivularis, Tecoma stans, Thinouia mucronata,  
dense forests that allows enough light input for the Chrysophyllum marginatum, Cyathea atrovirens,  
establishment of herbaceous communities as part Jamesonia flexuosa, Phlegmariurus saururus,  
745  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Pellaea sp., Phaeoceros tenuis and Phaeoceros acKnowledgementS  
bulbiculosus, represent varied habits from tree  
to epiphyte of the Hygrophilous Forests in the  
The authors wish to express their gratitude to  
W, N and center of Corrientes (Carnevalli, 1994; Prof. Oscar Canteros performing the chemical  
Fontana, 2018).  
processing of samples, to Teodoro Roberto  
technical) accompanying us in the different  
journeys.  
Funding: This work was supported by Secretaría  
General de Ciencia y Técnica, Universidad  
(
concluSIon  
The 55 pollen and spore types described and Nacional del Nordeste (PI 18Q006).  
illustrated in this contribution reaffirm diversified  
floras existed during the Mid-Late Holocene in  
Corrientes. Of them, 46 pollen grains correspond bIblIograPhy  
to 27 families of angiosperms and 9 trilete  
spore-types of ferns, lycophytes and bryophytes, ACEVEDO, T. L. & L. M. ANZÓTEGUI. 1998.  
obtained from six lakes of this wetland. Forty-  
two (42) taxa of these lived in the Iberá wetland  
Myrtaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
& G. A. CUADRADO (eds.), Flora Polínica del  
Nordeste Argentino, vol. I: 67-80. EUDENE,  
Corrientes.  
(
local taxa), whereas 13 extra-local ones would  
have arrived chiefly through air currents. This  
ecologic/procedence differentiation of species  
and their relative frequency per sample in each  
core (pollen diagrams) presented by Fernandez  
Pacella et al. (2011), Fernandez Pacella (2013),  
Fernandez Pacella & Lara (2019) was applied  
to interpret environmental characteristics and  
the evolution of the Iberá vegetation. Therefore,  
the identification of pollen grains up to species  
level enhances paleoenvironmental reconstructions  
based on more accurate ecological information and  
geographic distribution. Some local species as,  
ALONSO, U. C. 2014. Palinoteca de Plantas  
Vasculares Acuáticas para el Análisis Polínico en  
Paleolimnología. Graduate Thesis. Universidade  
da Coruña, España.  
ANTON, A. M. & F. O. ZULOAGA (dir). Flora  
Argentina [online]. Available in: http://www.  
floraargentina.edu.ar [Access: 25 October 2021].  
ANZÓTEGUI, L. M. 2001. Anacardiaceae. In: PIRE,  
S. M., L. M. ANZÓTEGUI & G. A. CUADRADO  
(eds.), Flora Polínica del Nordeste Argentino, vol.  
II: 19-26. EUDENE, Corrientes.  
considered in this studied region, were temperate- ANZÓTEGUI, L. M. & S. S. GARRALLA. 1985.  
environmentally restricted and, for example, during  
the first stage of the Late Holocene, characteristic  
species of psammophilous herbaceous steppe were  
documented. On the other hand, in a later stage  
Estudio palinológico de la Formación Paraná  
(Mioceno superior), (Pozo Josefina), Provincia  
de Santa Fe, Argentina. I parte: Descripciones  
sistemáticas. Facena 6: 101-177.  
of the Late Holocene, several species appeared ANZÓTEGUI, L. M. & M. S. FERUCCI. 1998.  
indicating the beginning of the development of  
Hygrophilous Forest”. Instead, other species such  
as grasses are dominant throughout the Holocene  
in Corrientes. This work broadens the knowledge  
Sapindaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
& G. A. CUADRADO (eds.), Flora Polínica del  
Nordeste Argentino, vol. I: 95-110. EUDENE,  
Corrientes.  
of the palynological flora of northeastern Argentine ANZÓTEGUI, L. M. & M. A. CACCAVARI. 2001.  
and, will help to differentiate the local vegetation  
from the extra-local in future interpretations.  
Vitaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
& G. A. CUADRADO (eds.), Flora Polínica del  
Nordeste Argentino, vol: 141-147. EUDENE,  
Corrientes.  
authorS contrIbutIon  
ANZÓTEGUI, L. M. & L. R. MAUTINO. 2001a.  
Celtidaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
& G. A. CUADRADO (eds.), Flora Polínica del  
Nordeste Argentino, vol. II: 61-64. EUDENE,  
Corrientes  
Both authors have jointly and equally carried out  
the data collection, interpretation and writing of the  
manuscript.  
746  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
ANZÓTEGUI, L. M. & L. R. MAUTINO. 2001b.  
Ulmaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
G. A. CUADRADO (eds.), Flora Polínica del  
Flora Polínica del Nordeste Argentino, vol. III: 55-  
69. EUDENE, Corrientes.  
CARNEVALLI, R. 1994. Fitogeografía de la Provincia  
de Corrientes. LITOCOLOR, Asunción.  
&
Nordeste Argentino, vol. II: 137-139. EUDENE,  
Corrientes.  
CECOTTI ÁLVAREZ, M. D., M. E. GARCÍA, N. J.  
F. REYES y A. C. SLANIS. 2017. Morfología  
polínica de las especies de Ludwigia (Onagraceae,  
Ludwigioideae) del Noroeste de Argentina. Lilloa  
54: 29-40.  
CONTRERAS-DUARTE, A. R., R. G. BOGOTÁ-  
ÁNGEL & L. C. JIMÉNEZ-BULLA. 2006.  
Atlas de las Esporas de Pteridófitos de Chipaque  
(Cundinamarca, Colombia). Caldasia 28: 327-357.  
CUADRADO, G. A. 1998a. Polygalaceae. In: PIRE, S.  
M., L. M. ANZÓTEGUI & G. A. CUADRADO  
(eds.), Flora Polínica del Nordeste Argentino, vol. I:  
81-88. EUDENE. Corrientes.  
APG IV. 2017. Angiosperm Phylogeny Group  
classification for the orders and families of flowering  
plants. Checklist dataset [online]. Available in:  
https://doi.org/10.15468/fzuaam accessed via GBIF.  
org  
ARBO, M. & S. TRESSENS. 2002. Flora del Iberá:  
Corrientes, Argentina. EUDENE, Corrientes.  
ARREGUÍN-SÁNCHEZ, M., R. FERNÁNDEZ NAVA,  
R. PALACIOS CHÁVEZ & D. L. QUIROZ  
GARCÍA. 1996. Morfología de las esporas de  
Pteridófitas Isospóreas del Estado de Querétaro,  
México (parte a). Polibotánica 2: 10-60.  
BAUERMANN, S. G., A. CARDOSO PACHECO  
EVALDT, J. R. ZANCHIN & S. A. DE LORETO  
BORDIGNON. 2010. Diferenciação polínica de  
Butia, Euterpe, Geonoma, Syagrus e Thritrinax e  
implicações paleoecológicas de Arecaceae para o  
Rio Grande do Sul. IHERINGIA, Sér. Bot. 65: 35-  
CUADRADO, G. A. 1998b. Sapotaceae. In: PIRE, S. M.,  
L. M. ANZÓTEGUI & G. A. CUADRADO (eds.),  
Flora Polínica del Nordeste Argentino, vol. I: 111-  
117. EUDENE. Corrientes.  
CUADRADO, G. A. 1998c. Polygalaceae. In: PIRE, S.  
M., L. M. ANZÓTEGUI & G. A. CUADRADO  
(eds.), Flora Polínica del Nordeste Argentino, vol. I:  
81-88. EUDENE, Corrientes.  
4
6. https://isb.emnuvens.com.br/iheringia/article/  
view/79  
BAUNI, V. & M. A. HOMBERG. 2015. Reserva Natural  
Campo San Juan. 1a ed. Fundación de Historia  
Natural Félix de Azara, Buenos Aires.  
BHATTACHARYA, K., M. R. MAJUMDAR & S.  
GUPTA BHATTACHARYA. 2009. A Text Book of  
Palynology. New Central Book Agency (P) Ltd.,  
Kolkata.  
BOELCKE, O. 1992. Plantas Vasculares de la Argentina:  
nativas y exóticas. 2da ed. Hemisferio Sur, Buenos  
Aires.  
CABRAL, E. L. & M. CASTRO. 2007. Palmeras  
Argentinas, Guía para el reconocimiento. L.O.L.A.,  
Buenos Aires.  
CABRERA, A. L. 1976. Regiones fitogeográficas  
argentinas. En: Kugler, W. F. (ed.), Enciclopedia  
argentina de agricultura y jardinería. Tomo 2. 2a.  
edición, Fascículo 1. pp. 1-85. Acme, Buenos Aires.  
CACCAVARI, M. A. & E. DOME. 2001. Fabaceae-  
Mimosoideae. Tribu: Acacieae. In: PIRE, S. M.,  
L. M. ANZÓTEGUI & G. A. CUADRADO (eds.),  
Flora Polínica del Nordeste Argentino, vol. II: 65-  
CUADRADO, G. A. & J. J. NEIFF. 1993. Palynology  
of embalsados in distrophic lakes in northeastern of  
Argentina. Revista Brasil. Biol. 53: 443-451.  
CURTIS, H., N. S. BARNES, A. SCHNEK & G.  
FLORES. 2001. Biología. 6a. ed. en español.  
Panamericana, Buenos Aires.  
DELLA,A.P.&J.PRADO.2020.Jamesonia(Pteridaceae)  
in Brazil. Biota. Neotrop. 20: e20200986. https://doi.  
org/10.1590/1676-0611-BN-2020-0986  
DELLA, A. P., J. PRADO & R. Y. HIRAI. Jamesonia. In:  
Flora do Brasil [online]. Available in: http://reflora.  
jbrj.gov.br/reflora/floradobrasil/FB134680  
DÍEZ DAPENA, M. J., S. TALAVERA LOZANO y P.  
GARCÍA MURILLO. 1988. Contributions to the  
palynology of hydrophytic, non-entomophilous  
angiosperms. 1. Studies with LM and SEM.  
Candollea 43: 147-158.  
ESKUCHE, U. G. 2004. La vegetación de la vega del  
rio Paraná medio superior, Argentina. Folia Bot.  
Geobot. Correntesiana 17:1-60.  
FAEGRI, K. & D. IVERSEN. 1989. Texbook of pollen  
analysis. 4 ed. New John Willey & Sons, Chichester.  
FERNÁNDEZ, I. 1987. Contribución al conocimiento  
palinológico de Cyperaceae. Acta Bot. Malac. 12:  
173-181.  
7
2. EUDENE, Corrientes.  
CACCAVARI, M. A. & E. DOME. 2006. Fabaceae-  
Mimosoideae. Tribu: Mimoseae. In: PIRE, S. M.,  
L. M. ANZÓTEGUI & G. A. CUADRADO (eds.),  
747  
Bol. Soc. Argent. Bot. 57 (4) 2022  
FERNANDEZ PACELLA, L. 2013. Palinología del  
Cuaternario en sedimentos lacustres del Noroeste  
del Iberá, Corrientes, Argentina. Ph.D. Thesis.  
Universidad Nacional del Nordeste, Argentina.  
FERNANDEZ PACELLA, L. 2014. Morfología polínica  
de especies del género Senna (Fabaceae) del sureste  
del Iberá, Corrientes, Argentina. Rev. Biol. Trop. 62:  
FUERTES, E. & M. RODRÍGUEZ. 2009. Estudio sobre  
la morfología y germinación de las esporas de tres  
species de Sphagnum (Murci, Sphagnaceae). Bot.  
Complut. 33: 29-35. https://revistas.ucm.es/index.  
php/BOCM/article/view/BOCM0909110029A  
GARCÍA, A. V., H. S. LEYES, R. B. MARTÍNEZ, Y.  
J. PÉREZ, J. M. PINEIRO, M. E. PRIETO & S.  
C. SCHALLER. 2013. Guía de la Vegetación de la  
Estación Biológica Corrientes. In: FONTANA, J.  
L. (ed.), Publicaciones Didácticas de la Cátedra de  
Ecología Vegetal, vol. I: 44-51. Facultad de Ciencias  
Exactas, Naturales y Agrimensura, Corrientes.  
GARRALLA, S. S. 1998. Estudio palinológico de una  
secuencia sedimentaria del Holoceno, norte de Santa  
Fe, Argentina. Polen 9: 17-27.  
GARRALLA, S. S. & G. A. CUADRADO. 2001.  
Meliaceae. In: PIRE, S. M., L. M. ANZÓTEGUI  
& G. A. CUADRADO (eds.), Flora Polínica del  
Nordeste Argentino, vol. II: 95-100. EUDENE,  
Corrientes.  
GENTILI, C. & RIMOLDI, H. 1979. Mesopotamia. II  
Simposio de Geología RegionalArgentina. Academia  
Nacional de Ciencias en Córdoba, Vol. I: pp 185-222.  
GÓMEZ-NOGUEZ, F., B. PÉREZ-GARCÍA, A.  
MENDOZA-RUÍZ & A. OROZCO-SEGOVIA.  
2013. Flora Palinológica de los Helechos y Licofitas  
de Río Malila, Hidalgo, México. Bot. sci. 91: 135-  
154. https://doi.org/10.17129/botsci.410  
7
69-782.  
FERNANDEZ PACELLA, L. 2015. Registro fósil y  
distribución de Anadenathera en Argentina desde el  
Mioceno hasta la actualidad. Estud. Geol. 71: e031.  
http://dx.doi.org/10.3989/egeol.41834.343  
FERNANDEZ PACELLA, L. 2018. Estudio palinológico  
de un perfil sedimentario del Holoceno Medio-  
Tardío, oeste del Iberá, Corrientes, Argentina. Rev.  
Mex. Cienc. Geol. 35: 93-101.  
https://doi.org/10.22201/cgeo.20072902e.2018.1.531  
FERNANDEZ PACELLA, L. & O. CANTEROS.  
2
014. Poaceae. Tribus: Andropogoneae, Bromeae,  
Cynodonteae, Eragrostidae, Olyreae y Oryzeae.  
In: PIRE, S. M., L. M. ANZÓTEGUI & G. A.  
CUADRADO (eds.), Flora Polínica del Nordeste  
Argentino, vol. IV: 88-94. EUDENE, Corrientes.  
FERNANDEZ PACELLA, L. & M. B. LARA. 2019.  
Paleoenvironmental Interpretation of the mid‐late  
Holocene of Corrientes province, Argentina. Nordic J.  
Bot. 2019: e02252. http://dx.doi.org/10.1111/njb.02252  
FERNANDEZ PACELLA, L., S. S. GARRALLA & L.  
M. ANZÓTEGUI. 2011. Cambios de la vegetación  
durante el Holoceno en la región Norte del Iberá.  
Provincia de Corrientes, Argentina. Rev. Biol. Trop.  
GRADSTEIN, S. R. 2018. Key to hornworts  
(Anthocerotophyta) of Colombia. Caldasia 40:  
262-270.  
5
9: 103-112.  
FERNANDEZ PACELLA, L., L. M. ANZÓTEGUI  
Y. HORN. 2014a. Fabaceae-Caesalpinioideae.  
https://dx.doi.org/10.1544 6/caldasiav40n2.71750  
HERBST, R. & SANTA CRUZ, J. 1985. Mapa  
litoestratigráfico de la Provincia de Corrientes.  
Revista D’Orbignyana 2: 1-51.  
HIRAI, R. Y. & J. PRADO. Pellaea. In: Flora do Brasil  
[online]. Available in: http://reflora.jbrj.gov.br/  
reflora/floradobrasil/FB91954 [Access: 2 November  
2021].  
IRIONDO, M. 1994. Los climas cuaternarios de la región  
Pampeana. Museo Provincial de Ciencias Naturales  
“Florentino Ameghino” 4: 481.  
IRIONDO, M. 2010. Geología del Cuaternario en  
Argentina. Editorial Moglia, Corrientes.  
KREMP, G. W. 1965. Morphologic Encyclopedia of  
Palynology. The University Arizona Press, Tucson.  
LORSCHEITTER, M. L.,A. R.ASHRAF, R. MACHADO  
BUENO & V. MOSBRUGGER. 1998. Pteridophyte  
spores of Rio Grande do Sul flora, Brazil. Part I.  
Palaeontographica 246: 1-113.  
&
In: PIRE, S. M., L. M. ANZÓTEGUI & G. A.  
CUADRADO (eds.), Flora Polínica del Nordeste  
Argentino, vol. IV: 61-77. EUDENE, Corrientes.  
FERNANDEZ PACELLA, L., L. M. ANZÓTEGUI &  
L. R. MAUTINO. 2014b. Fabaceae-Mimosoideae.  
Tribu: Mimoseae-Prosopis In: PIRE, S. M., L. M.  
ANZÓTEGUI & G. A. CUADRADO (eds.), Flora  
Polínica del Nordeste Argentino, vol. IV: 88-94.  
EUDENE, Corrientes.  
FLORA DO BRASIL [online]. Available in: http://  
floradobrasil.jbrj.gov.br/ [Access: 25 October 2021].  
FONTANA, J. L. 2018. La Vegetación del Nordeste  
Argentino. 1. Las Comunidades vegetales del  
Noroeste de Corrientes y del Este de Chaco.  
Publicaciones Didácticas de la Cátedra de Ecología  
Vegetal. Vol. 3. UNNE, Corrientes.  
748  
L. Fernandez Pacella & M. Di Pasquo - Pollen and spores of the Iberá Wetlands  
MALDONADO, P. & E. HOHNE. 2006. Atlas del Gran  
PEÑALOZA-BOJACÁ, G. F., B. A., OLIVEIRA,  
C. A. T. ARAUJO, L. B. FANTECELLE, J. C.  
VILLARREAL & A. S. MACIEL-SILVA.  
Anthocerotaceae. In: Flora do Brasil [online].  
Available in: http://reflora.jbrj.gov.br/reflora/  
floradobrasil/FB97153 [Access: 3 April 2021]  
PÉREZ-JIMÉNEZ, J. C., F. ESLAVA-SILVA, K.  
JIMÉNEZ-DURÁN, F. GÓMEZ-NOGUEZ &  
M. E. MUÑIZ-DIAZ DE LEÓN. 2020. Estudio  
Palinológico de los helechos y licofitas de la Zona  
Núcleo Poniente de la Reserva Ecológica del  
Pedregal de San Ángel, Ciudad de México, México.  
Bot. Sci. 98: 517-532.  
a.  
Chaco americano. 1 ed. Agencia Alemana de  
Cooperación Técnica, Buenos Aires.  
MARKGRAF, V. & H. L. D`ANTONI. 1978. Polen  
Flora of Argentina-Modern Spore and Pollen Types  
of Pteridophyta, Gymnospermae and Angiospermae.  
The University of Arizona Press, Tucson.  
MEDEANIC, S., C. V. CORDAZZO & L. G. LIMA.  
2
008. Diversidade Polínica de Plantas em Dunas do  
Extremo Sul do Brasil. GRAVEL 6: 67-80. Available  
in: http://repositorio.furg.br/handle/1/1867  
MEZA TORRES, E. I., E. R. DE LA SOTA & M.  
S. FERRUCCI. 2013. Sinopsis de los helechos  
y licofitos del Parque Nacional Mburucuyá  
https://doi.org/10.17129/botsci.2424  
(
Corrientes, Argentina). Claves de especies. Bol.  
PIRE, S. M., L. M. ANZÓTEGUI, L. R. MAUTINO &  
S. S. GARRALLA. 2006. Acanthaceae. In: PIRE,  
S. M., L. M. ANZÓTEGUI & G. A. CUADRADO  
(eds.), Flora Polínica del Nordeste Argentino, vol.  
III: 15-38. EUDENE, Corrientes.  
PPG I. 2016. The Pteridophyte Phylogeny Group.  
A community-derived classification for extant  
lycophytes and ferns. J. Syst. Evol. 54: 563-603.  
PRIETO, A. R. & M. E. QUATTROCCHIO. 1993.  
Briófitas y Pteridófitas en sedimentos del Holoceno  
en la provincia de Buenos Aires, Argentina. An.  
Asoc. Palinol. Leng. Esp. 6: 17-37.  
Soc. Argent. Bot. 48: 121-136.  
MORBELLI, M. A. 1977. Esporas de las especies  
argentinas de Selaginella (Selaginellaceae–  
Pteridophyta). Obra Cent. Mus. La Plata 3: 121-150.  
MORBELLI, M. A., J. R. ROWLEY & D. CLAUGHER.  
2
001. Spore wall structure in Selaginella (Lycophyta)  
species growing in Argentina. Bol. Soc. Argent. Bot.  
6: 315-368.  
MORBELLI, M. A., M. R. PIÑEIRO & G. E. GIUDICE.  
010. Spore morphology and wall ultrastructure of  
3
2
Hymenophyllaceae Link (Pteridophyta) from north-  
west Argentina. Grana 49: 37-46.  
PUNT, W., P. P. HOEN, S. BLACKMORE, S. NILSSON  
& A. LE THOMAS. 2007. Glossary of pollen and  
spore terminology. Rev. Palaeobot. Palynol. 143:  
1-81.  
http://dx.doi.org/10.1080/00173130903483663  
MORELLO, J. H. &A. F. RODRÍGUEZ. 2009. El Chaco Sin  
a.  
Bosques. 1 ed. Ed. Orientación Gráfica, Buenos Aires.  
NEIFF, J. J. 1997. Ecología evolutiva del macrosistema  
Iberá (Corrientes, Argentina). Master Thesis.  
Universidad Nacional del Litoral, Argentina.  
NEIFF, J. J. 2004. El Iberá… ¿en peligro? Fundación  
Vida Silvestre, Buenos Aires.  
NILSON, S. & J. PRAGLOWSKI. 1992. Erdtman`s  
handook of palynology. Munksgaard International  
Publishers, Copenhagen.  
OLIVEIRA, P. P. & F. RIBEIRO DO SANTOS. 2014.  
Prospecçao palinológica em méis da Bahia. Mídia  
Editora, Bahia.  
ORFEO, O. 2005. Historia Geológica del Iberá, provincia  
de Corrientes, como escenario de biodiversidad.  
INSUGEO Miscelánea 14: 71-78.  
ORFEO, O. & J. J. NEIFF. 2008. Esteros del Iberá: un  
enorme laboratorio a cielo abierto. Sitios de interés  
geológico de la República Argentina 46: 415-425.  
PALDAT, A palynological database [online]. Available  
in: (2000 onwards, www.paldat.org) [Access: 5  
November 2021].  
https://doi.org/10.1016/j.revpalbo.2006.06.008  
RAMOS, V. 1999. Las provincias geológicas del  
territorio argentino. Instituto de Geología y Recursos  
Minerales. 29: 41-96.  
RAVEN, P. H., R. F. EVERT & S. E. EICHHON. 1991.  
Biología de las Plantas. T. I-II. Reverté, Barcelona.  
RINCÓN BARON, E. J., C. H. ROLLERI, L. M.  
PASSARELLI, S. ESPINOSA MATÍAS & A.  
M. TORRES. 2014. Esporogénesis, esporodermo  
y
ornamentación de esporas maduras en  
Lycopodiaceae. Rev. Biol. Trop. 62: 1161-1195.  
SÁENZ LAÍN, C. 2004. Glosario de términos  
palinológicos. Lazaroa 25: 93-112.  
SALGADO, C. R., 2006. Flora melífera de la provincia  
de Chaco. PROSAP y Ministerio de Producción del  
Chaco, Resistencia.  
SERSIC, A. N. 1983. Ontogenia del esporangio  
y esporogénesis en Lycopodium saururus  
(Lycopodiales). Bol. Soc. Argent. Bot. 22: 205-  
220.  
749  
Bol. Soc. Argent. Bot. 57 (4) 2022  
TONELLO, M. S. & A. R. PRIETO. 2010: Tendencias  
climáticas para los pastizales pampeanos durante  
el Pleistoceno tardío-Holoceno: estimaciones  
cuantitativas basadas en secuencias polínicas fósiles.  
Ameghiniana 7: 501-514. https://www.ameghiniana.  
org.ar/index.php/ameghiniana/article/view/279  
TRIGO, M. & I. FERNÁNDEZ. 1995. Contribución  
al estudio polínico de especies ornamentales  
con interés alergógeno en cultivadas en Málaga:  
Monocotiledóneas. Acta Bot. Malac. 20: 61-70.  
Available in: http://floradobrasil.jbrj.gov.br/jabot/  
floradobrasil/FB128519 [Access: 19 August 2021]  
YBERT, J. P., R. SCHEEL-YBERT & M. CARVALHO.  
2016. Grãos de pólen de plantas vasculares  
Dicotiledôneas do Estado do Rio de Janeiro, Brasil.  
Vol. I. Museu Nacional, Universidade Federal do  
Rio de Janeiro, Rio de Janeiro.  
YBERT, J. P., M. CARVALHO & R. SCHEEL-YBERT.  
2018. Grãos de pólen de plantas vasculares do  
Estado do Rio de Janeiro, Brasil. Vol. IV. Museu  
Nacional, Universidade Federal do Rio de Janeiro,  
Rio de Janeiro.  
WINDISCH, P.G., C. G. V. RAMOS & B. OELLGAARD.  
Lycopodiaceae. In: Flora do Brasil [online].  
750