Algas y Cyanobacteria presentes en la rizosfera de plantas acumuladoras de plomo

Autores/as

  • Alejandra G. Becerra Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal (IMBIV) - CONICET- Universidad Nacional de Córdoba (UNC)
  • Claudia Daga Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
  • Raquel Murialdo Departamento de Hidráulica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
  • Valeria Faggioli Instituto Nacional de Tecnología Agropecuaria, EEAMarcos Juárez, Ruta 12 km 36, 2580 Marcos Juárez, Argentina.
  • Eugenia Menoyo Grupo de Estudios Ambientales (GEA), Instituto de Matemática Aplicada San Luis (IMASL)–CONICET, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
  • M. Julieta Salazar Instituto Multidisciplinario de Biología Vegetal (IMBIV)-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield, 1611. Córdoba, Argentina

DOI:

https://doi.org/10.31055/1851.2372.v56.n1.29317

Palabras clave:

Cianobacterias, Metales pesados, Planta, Plomo, Rizósfera, Trebouxia, Vaucheria

Resumen

Introducción y objetivos: Las especies de algas y Cyanobacteria que crecen en sitios contaminados pueden acumular altas concentraciones de metales pesados. En este trabajo se propuso a) caracterizar la comunidad de algas y Cyanobacteria y b) evaluar el efecto del plomo (Pb) sobre la composición de algas presentes en la rizosfera de plantas capaces de acumular Pb en la provincia de Córdoba. 

M&M: Se tomaron muestras de suelo de la rizosfera de Sorghum halepense, Bidens pilosa y Tagetes minuta en sitios con diferentes niveles de Pb. En el laboratorio, el suelo se sembró en cápsulas con medio de Watanabe esterilizado. Los cultivos crecieron 9 semanas. Se identificó en el tiempo y analizó la frecuencia relativa final de las algas y Cyanobacteria.

Resultados: En suelos contaminados se identificaron 24 especies de Cyanobacteria, Chloroplastida y Xanthophyceae. Las Cyanobacteria con heterocitos Cylindrospermum muscicola, Nostoc commune y Calothrix clavata registraron una frecuencia media relativa (entre 21 y 60%). Trebouxia parmeliae (Chloroplastida) y Vaucheria sp. (Xanthophyceae) estuvieron presentes en los suelos con mayor nivel de Pb. La mayor parte de las especies se concentraron en los niveles más bajos de Pb.

Conclusiones: Se observó un efecto negativo del Pb sobre la riqueza de especies de algas y Cyanobacteria en la rizosfera de las plantas evaluadas. En base a la composición de la comunidad de algas y Cyanobacteria del suelo se determinan dos grandes grupos que podrían ser considerados como comunidades tolerantes y no tolerantes a la contaminación de Pb.

Biografía del autor/a

  • Alejandra G. Becerra, Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal (IMBIV) - CONICET- Universidad Nacional de Córdoba (UNC)

    Laboratorio de Micología, Departamento de Diversidad Biológica y Ecología Prof. Asociada de la Cátedra de Diversidad Biológica I, Investigadora Independiente del Conicet, Insituto Multidisciplinario de Biología Vegetal.

Referencias

ALVAREZ, R., A. DEL HOYO, F. G. GARCÍA BREIJO, A. J. REIG, E. M. DEL CAMPO, A. GUÉRA & L. M. CASANO. 2012. Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J. Plant Physiol. 169: 1797-1808. https://doi.org/10.1016/j.jplph.2012.07.005

ARICA, M.Y., I. TÜZÜM, E. YALCIN, Ö, I. & G. BAYRAMOGLU. 2005. Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Proc. Biochem. 40: 2351-2358. https://doi.org/10.1016/j.procbio.2004.09.008

BAČKOR, M. & P. VÁCZI. 2002. Copper tolerance in the lichen photobiont Trebouxia erici (Chlorophyta). Environ. Exp. Bot. 48: 11-20. https://doi.org/10.1016/S0098-8472(02)00004-7

BAČKOR, M., J. HUDÁK, M. REPČÁK, W. ZIEGLER & M. BAČKOROVÁ. 1998. The influence of pH and lichen metabolites (vulpinic acid and (+) usnic acid) on the growth of lichen photobiont Trebouxia irregularis. The Lichenologist 30: 577-582. https://doi.org/10.1017/S0024282992000574

BAUER, D. E., V. CONFORTI, L. RUIZ & N. GÓMEZ. 2012. An in situ test to explore the responses of Scenedesmus acutus and Lepocinclis acus as indicators of the changes in water quality in lowland streams. Ecotoxicol. Environ. Safety 77: 71-78. https://doi.org/10.1016/j.ecoenv.2011.10.021

BELNAP, J. 1993. Recovery rates of cryptobiotic soil crusts: inoculant use and assessment methods. Great Basin Nat. 53: 89-95.

BIRUK, L. N., J. MORETTON, A. FABRIZIO DE IORIO, C. WEIGANDT, J. ETCHEVERRY, J. FILIPETTO & A. MAGDALENO. 2017. Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants. Ecotoxicol. Environ. Safety 135: 302-311. https://doi.org/10.1016/j.ecoenv.2016.09.024

BOURELLY, P. 1981. Les Algues d'eau douce: Initiation a la systematique. Tome III: Les Algues jaunes at brunes. Chrysophycées. Phéophycées. Xanthophycées et Diatomées. Societé Nouvelle des Editions Boubée, Paris.

BRAY, R. H. & L. T. KURTZ. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science 59: 39-45. http://dx.doi.org/10.1097/00010694-194501000-00006

BREMNER J. M. 1996. Nitrogen total. In: SPARKS L., A.L. PAGE, P.A. HELMKE, R.H. LOEPPERT, P. N. SOLTANPOUR, M. A. TABATABAI, C. T. JOHNSTON & M. E. SUMNER (eds). Methods of Soil Analysis. Part 3. Chemical Methods. pp. 1085-1121. Soil Science Society of America and American Society of Agronomy, Madison, USA. https://doi.org/10.2136/sssabookser5.3.c37

BUBRICK, P., M. GALUN & A. FRENSDORFF. 1984. Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria parietina (L.) Th. Fr. Can be found free-living in nature. New Phytol. 97: 455-462. https://doi.org/10.1111/j.1469-8137.1984.tb03611.x

CHRIST, R. H., K. OBERHOLSER, N. SHANK & M. NGUYEN. 1980. Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Technol. 15: 1212-1217.https://doi.org/10.1021/es00092a010

EPA, U. 2007. Brownfields Road Map to Understanding Options for Site Investigation and Cleanup. AGENCY U.S.E.P. Sixth Edition [online]. Disponible en: www.epa.gov/brownfields/brownfields-roadmap [Acceso: 5 Julio 2020].

ESSA, A. M. M. & S. S. M. MOSTAFA. 2011. Heavy metals biomineralization by some cyanobacterial isolates. Egypt. J. Bot. 11: 146-153.

FAO & ITPS. 2015. Status of the World’s Soil Resources (SWSR) - Main Report. Rome, Italy, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils [online]. Disponible en: http://www.fao.org/3/a-i5199e.pdf [Acceso: 5 Julio 2020].

FOSTER, P. L. 1982. Metal resistance of Chlorophyta from rivers polluted by heavy metals. Freshwater Biol. 12: 41-61. https://doi.org/10.1111/j.1365-2427.1982.tb00602.x

FU, P. & F. SECUNDO. 2016. Algae and their bacterial consortia for soil bioremediation. Chem. Enginn. Trans. 49: 427-432. http://doi.org/10.3303/CET1649072

GARCÍA-MEZA, J. V., A. CARRILLO-CHAVEZ & O. MORTON-BERMEA. 2006. Sequential extractions on mine tailings samples after and before bioassays: implications on the speciation of metals during microbial re-colonization. Environ. Geol. 49: 437-448. https://doi.org/10.1007/s00254-005-0101-4

GORGAS J. & J. TASSILE. 2003. Recursos Naturales de la Provincia de Córdoba. Vol. 1. INTA, Córdoba, Argentina.

GUPTA, R. K., K. K. CHOUDHARY, M. KUMAR, A. NEGI & H. RAI. 2012. Bioremediation and cyanobacteria an overview. BioNano Frontiers 9: 190-196.

HALPERIN, D.R., M. I. MENDOZA & G. ZULPA DE CAIRE. 1973. Obtención de cultivos axénicos de algas azules (Cyanophyta). Physis 32: 67-84.

HIFNEY, A.F., A. A. ISSA, M. S. ADAM & A. A. AL-ABSSY. 2009. The influence of the heavy metals (Cd2+, Ni2+ and Pb2+) concentrations on the algal distribution as well as species composition in relation to soil types. Egypt. J. Bot. 38: 121-134.

HOFFMAN, L. 1989. Algae of Terrestrial Habitats. Bot. Rev. 55: 77-105. https://doi.org/10.1007/BF02858529

HONEGGER, R. 1991. Functional aspects of the lichen symbiosis. Ann. Rev. Physiol Plant Mol. Biol. 42: 553-558. https://doi.org/10.1146/annurev.pp.42.060191.003005

HUBER-PESTALOZZI, G. 1961. Das Phytoplankton des Süsswasser, Chlorophyceae. In: THIENEMANN A. (ed). Die Binnengewasser, E. Schweizerbar t’sche Verlagsbuchhandlung, Stuttgart.

JACKSON, M. L. 1964. Análisis químico de suelos. 2nd Edn. Omega, Barcelona, España.

JOHANSEN, J. R. & L. E. SHUBERT. 2001. Algae in Soils. Nova Hedwigia 123: 297-306.

KOMÁREK J. & K. ANAGNOSTIDIS. 1998. Cyanoprokaryota 1. Chroococcales. In: ETTL, H., G. GÄRTNER, H. HEYNIG & D. MOLLENHAUER (eds.), Süßwasserflora von Mitteleuropa, Gustav Fischer, pp. 548, Jena-Stuttgart- Lübeck-Ulm.

KOMÁREK, J. & K. ANAGNOSTIDIS. 2005. Cyanoprokariota: Oscillatoriales. In: BÜDEL B., L. KRIENITZ, G. GÄRTNER & M. SCHAGERL (eds.), Süßwasserflora von Mitteleuropa, 1ra edición. pp. 759, Elsevier, München.

KOMÁREK, J., C. L. SANT´ANNA, M. BOHUNICKÁ, J. MAREŠ, G. S. HENTSCHKE, J. RIGONATO & M. F. FIORE. 2013. Phenotype diversity and phylogeny of selected Scytonema-species (Cyanoprokaryota) from SE Brazil. Fottea 13: 173-200. https://doi.org/10.5507/fot.2013.015

KOMÁREK, J., J. KAŠTOVSKÝ, J. MAREŠ & J. R. JOHANSEN. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 86: 295-235.

KOMÁREK, J. & T. HAUER. 2013. CyanoDB.cz -On-line database of cyanobacterial genera. Word-wide electronic publication, Univ. of South Bohemia & Inst. of Botany, AS CR [online]. Disponible en: http://www.cyanodb.cz. [Acceso: 2 July 2020].

KULAL, D. K., C. L. PRAKASH, C. DCOSTA, S. SOME & P. K. KALAMBATE. 2020.

KUMAR, V. KUMAR SINGH & A. K. SHRIVASTAVA. Advances in Cyanobacterial Biology, pp. 291-300. Academic Press. https://doi.org/10.1016/B978-0-12-819311-2.00019-X

KUMAR, J. I. N., C. OOMMEN & R. N. KUMAR. 2009. Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha port, Gulf of Kutch, India. Am.-Eur. J. Agric. Environm. Sci. 6: 317-323.

KUMAR K., R. A. MELLELLA-HERRARA & J. W. GOLDEN. 2010. Cyanobacterial Heterocysts. Cold Spring Harb. Perspect. Biol. 2: a000315. https://doi: 10.1101/cshperspect.a000315

KUZYAKHMETOV, G. G. 1998. Algological evaluation of the toxicity of copper compounds in gray forest soil and leached chernozem. Eur. Soil Sci. 31: 877-882.

LA VOZ DEL INTERIOR. 2006. Más intoxicados con plomo en Bouwer [online]. Disponible en: http://archivo.lavoz.com.ar/nota.asp?nota_id=2144 [Acceso: 4 de noviembre 2020].

LA VOZ DEL INTERIOR. 2008. Bouwer sitiado por la contaminación [online]. Disponible en: http://archivo.lavoz.com.ar/08/02/10/secciones/grancordoba/nota.asp?nota_id=160954 [Acceso: 28 de diciembre 2020].

LICURSI, M. & N. GÓMEZ. 2013. Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): Responses from the individual cell to the community structure. Aquat. Toxicol. 134-135: 82-91. https://doi.org/10.1016/j.aquatox.2013.03.007

LUKEŠOVÁ, A. 2001. Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor. Ecol. 9: 341-350. https://doi.org/10.1046/j.1526-100X.2001.94002.x

LUKEŠOVÁ, A. & L. HOFFMANN. 1996. Soil algae from acid impacted forest areas of the Krušné Hory Mts. 1. Algal communities. Vegetatio 125: 123-136. https://doi.org/10.1007/BF00044646

MAGDALENO, A., L. DE CABO, S. ARREGHINI & S. SALINAS. 2014. Assessment of heavy metal contamination and water quality in an urban river from argentina. Braz. J. Aquat. Sci. Technol. 18: 113-120. https://doi.org/10.14210/bjast.v18n1.p113-120

MAHMOOD, Q., N. MIRZA & S. SHAHEEN. 2015. Phytoremediation using algae and macrophytes: I. In: ANSARI, A., S. GILL, R. GILL, G. LANZA & L. NEWMAN (eds.). Phytoremediation Springer, Cham., pp. 265-289. https://doi.org/10.1007/978-3-319-10969-5_22

MAXWELL, C. D. 1991. Floristic changes in soil algae and cyanobacteria in reclaimed metal-contaminated land at Sudbury, Canada. Water Air Soil Pollut. 60: 381-393. https://doi.org/10.1007/BF00282633

METTING, B. 1981. The systematics and ecology of soil algae. Bot. Rev. 47: 195-312. https://doi.org/10.1007/BF02868854

MULLER, G. 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2: 108-118.

MURIALDO, R. C., M.C. FERNÁNDEZ BELMONTE, I. C. DAGA, C. GONZÁLEZ & H. E. MURIALDO. 2019. Contribución al estudio de cianobacterias edáficas en un suelo con manejo agrícola de Córdoba-Argentina. Ciencia del Suelo 37: 383-387.

NALEWAIKO, C. & M. M. OLAVESON. 1995. Differential responses of growth, photosynthesis, respiration phosphate uptake to copper in copper-tolerant and copper-in-tolerant strains of Scenedesmus aqutus (Chlorophyceae). Can. J. Bot. 73: 1295-1303. https://doi.org/10.1139/b95-141

NOVAKOVSKAYA, I. V. & E. N. PATOVA. 2007. Changes in soil algal communities in spruce phytocenoses under the influence of aerotechnogenic pollution. Eur. Soil Sci. 40: 576-582. https://doi.org/10.1134/S1064229307050146

OKSANEN, J. 2015. Vegan: an introduction to ordination. Disponible en: http://cran.r-project.org.

O’FARRELL I., R. J. LOMBARDO, P. DE TEZANOS PINTO & C. LOEZ. 2002. The assessment of water quality in the Lower Luján River (Buenos Aires, Argentina): phytoplankton and algal bioassays. Environ. Pollution 120: 207-218. https://doi.org/10.1016/S0269-7491(02)00136-7

PAWLIK-SKOWRONSKA, B. 2000. Relationships between acid–soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris. Aquat. Toxicol. 50: 221-230. https://doi.org/10.1016/S0166-445X(99)00102-2

PAWLIK-SKOWRONSKA, B 2002. Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ. Pollut. 119: 119-227. https://doi.org/10.1016/S0269-7491(01)00280-9

PEPPER, I. L., C. P. GERBA, D. T. NEWBY & C. W. RICE. 2009. Soil: a public health threat or savior? Crit. Rev. Environ. Sci. Tech. 39: 416-432. https://doi.org/10.1080/10643380701664748

RAUNGSOMBOON, S., A. CHIDTHAISONG, B. BUNNAG, D. INTHORN & N. W. HARVEY. 2008. Removal of lead (Pb2+) by the Cyanobacterium Gloeocapsa sp. Biores. Tech. 99: 5650-5658. https://doi.org/10.1016/j.biortech.2007.10.056

R CORE TEAM. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: https://www.R-project.org.

RIPPKA, R., J. DERUELLES, J. B. WATERBURY, M. HERDMAN & R. Y. STANIER. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61. https://doi.org/10.1099/00221287-111-1-1

RODRÍGUEZ, C., I. ROCCHETTA, A. JUAREZ, A. TOLIVIA & V. CONFORTI. 2008. Toxicidad de los metales pesados sobre las microalgas: efectos bioquímicos, fisiológicos y morfológicos. En: RIAL A., A. VOLPEDO & L. FERNÁNDEZ REYES (eds.), Efecto de los cambios globales sobre la biodiversidad RED CYTED, Buenos Aires, Argentina, pp. 261-280.

ROY, S., A. N. GHOSH & A. R. THAKUR. 2008. Uptake of Pb2 by a cyanobacterium belonging to the genus Synechocystis, isolated from East Kolkata Wetlands. Biometals 21: 515-524. https://doi.org/10.1007/s10534-008-9138-7

SALAZAR, M. J. & M. L. PIGNATA. 2014. Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J. Geochem. Explor. 137:29-36. https://doi.org/10.1016/j.gexplo.2013.11.003

SALAZAR, M. J., J. H. RODRIGUEZ, G. L. NIETO, & M. L. PIGNATA. 2012. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mat. 233-234: 244-253. https://doi.org/10.1016/j.jhazmat.2012.07.026

SALAZAR, M. J., E. MENOYO, V. FAGGIOLI, J. GEML, M. CABELLO, J. RODRIGUEZ, N. MARRO, A. PARDO, M. L. PIGNATA & A. G. BECERRA. 2018. Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci. Total Environ. 643: 238-246. https://doi.org/10.1016/j.scitotenv.2018.06.199

SALGADO, S. G., M. A. Q. NIETO & N. M. B. SIMON. 2006. Optimisation of sample treatment for arsenic speciation in alga samples by focussed sonication and ultrafiltration. Talanta 68: 1522-1527. https://doi.org/10.1016/j.talanta.2005.08.004

SATHICQ, M. B. & N. GÓMEZ. 2018. Effects of hexavalent chromium on phytoplankton and bacterioplankton of the Río de la Plata estuary: an ex-situ assay. Environ. Monit. Assess. 190: 229. https://doi.org/10.1007/s10661-018-6619-1

SARAVANAN, A., V. BRINDHA & S. KRISHNAN. 2011. Characteristic study of the marine algae Sargassum sp. on metal adsorption. Am. J. Appl. Sci. 8: 691-694. https://doi.org/10.3844/ajassp.2011.691.694

SCHINQUEL, V., R. MURIALDO & C. DAGA. 2018. Cianobacterias edáficas en un relicto de monte nativo de la Provincia de Córdoba. Rev. Fac. Cs. Ex. Fis. Nat. 5: 59-67.

SHTINA, E. A. & M. M. GOLLERBAKH. 1976. Ecology of Soil Algae. Science Publishing House, Moscow, pp. 143.

SHUBERT, L. E., A-M RUSU, K. BARTOK & C. B. MONCRIEFF. 2001. Distribution and abundance of edaphic algae adapted to highly acidic, metal rich soil. In: ELSTER J. & O. LHOTSKY (eds), Algae and extreme environments, Nova Hedwigia, Beiheft 123: 411-425.

SINGH, J. S., A. KUMAR, A. N. RAI & D. P. SINGH. 2016. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7: 529. https://doi.org/10.3389/fmicb.2016.00529

SINGH, R., P. PARIHAR, M. SINGH, A. BAJGUZ, J. KUMAR & S. SINGH. 2017. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front. Microbiol. 8: 515. https://doi.org/10.3389/fmicb.2017.00515

SKOWRONSKI T., J. A. DE KNECHT, J. SIMONS & J. A. C. VERKLEIJ. 1998. Phytochelatin synthesis in response to cadmium uptake in Vaucheria (Xanthophyceae). Eur. J. Phycol. 33: 87-91. https://doi.org/10.1017/S0967026298001516

SUBASHCHANDRABOSE, S. R., B. RAMAKRISHNAN, M. MEGHARAJ, K. VENKATESWARLU & R. NAIDU. 2013. Mixotrophic Cyanobacteria and Microalgae as Distinctive Biological Agents for Organic Pollutant Degradation. Environ. Inter. 51: 59-72. https://doi.org/10.1016/j.envint.2012.10.007

SURESH, B. & G. A. RAVISHANKAR. 2004. Phytoremediation-a novel and promising approach for environmental clean-up. Crit. Rev. Biotech. 24: 97-124. https://doi.org/10.1080/07388550490493627

TELL, G. 1976. Algas del suelo de los alrededores de Buenos Aires (República Argentina). Darwiniana 20: 491-548.

TEMRALEEVA, A. D., D. L. PINSKII, E. N. PATOVA & E. V. SPIRINA. 2011. The use of algae–Cyanobacterial communities for the assessment of lead pollution of gray forest soils. Eur. Soil Sci. 44: 326-331. https://doi.org/10.1134/S1064229311030136

TREVORS, J. T. 1984. Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil. Plant Soil 77: 285-93. https://doi.org/10.1007/BF02182931

TRZCIŇSKA, M. & B. PAWLIK-SKOWROŇSKA. 2008. Soil algal communities inhabiting zinc and lead mine spoils. J. Appl. Phycol. 20: 341-348. https://doi.org/10.1007/s10811-007-9259-3

WALKLEY, A. J. & I. A. BLACK. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37: 29-38.

WATANABE, A. 1961. Collection and cultivation of nitrogen fixing blue-green algae and their effect on the growth and crop yield of rice plants. Stud. Tokugawa Inst. Tokyo 9: 162-166.

WEISSENHORN, L. & C. LEYVAL. 1995. Root colonization of maize by a Cd-sensitive and Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175: 233-238.

WHO. 2013. Contaminated sites and health. Copenhagen, Denmark. [online]. Disponible en: http://www.euro.who.int/__data/assets/pdf_file/0003/186240/e96843e.pdf [Acceso: 5 July 2020].

YOON, H. S., C. CINIGLIA, M. WU, J. COMERON, G. PINTO, A. POLLIO & D. BHATTACHARYA. 2006. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol. Biol. 6: 78. https://doi.org/10.1186/1471-2148-6-78

Descargas

Publicado

2021-02-18

Número

Sección

Ficología

Cómo citar

“Algas Y Cyanobacteria Presentes En La Rizosfera De Plantas Acumuladoras De Plomo”. 2021. Boletín De La Sociedad Argentina De Botánica 56 (1). https://doi.org/10.31055/1851.2372.v56.n1.29317.

Artículos similares

81-90 de 186

También puede Iniciar una búsqueda de similitud avanzada para este artículo.