Análisis exploratorio de las variaciones estacionales e intraestacionales de los principales tipos polínicos en la atmósfera de la ciudad de Sunchales, Argentina

Autores/as

  • Claudio Pérez Departamento de Ciencias de la Atmósfera (DCAO), FCEN, UBA, Pabellón 2, 2do piso, Ciudad Universitaria http://orcid.org/0000-0002-7808-5062
  • Mauro Covi Departamento de Ciencias de la Atmósfera y los Océanos, Intendente Güiraldes 2160, 2do piso, Pabellón II, Ciudad Universitaria, C1428 EHA Buenos Aires, Argentina. https://orcid.org/0000-0002-2449-4899
  • María Gassmann Departamento de Ciencias de la Atmósfera y los Océanos, Intendente Güiraldes 2160, 2do piso, Pabellón II, Ciudad Universitaria, C1428 EHA Buenos Aires, Argentina/ Consejo Nacional de Investigaciones Científicas y Técnicas https://orcid.org/0000-0001-7681-376X
  • Ana Ulke Departamento de Ciencias de la Atmósfera y los Océanos, Intendente Güiraldes 2160, 2do piso, Pabellón II, Ciudad Universitaria, C1428 EHA Buenos Aires, Argentina. https://orcid.org/0000-0002-7973-3076

DOI:

https://doi.org/10.31055/1851.2372.v56.n3.31998

Palabras clave:

análisis de Fourier, concentraciones de polen en el aire, influencia meteorológica, Santa Fe, trampa Burkard

Resumen

Introducción y objetivos: El estudio de la variabilidad estacional e intraestacional de la concentración de polen en el aire es de suma importancia para comprender las relaciones con la vegetación emisora ​​y los parámetros atmosféricos que modulan el transporte de polen. Esta investigación tiene como objetivo estudiar estas variabilidades en Sunchales, una ciudad ubicada en el centro-este de Argentina.

M&M: El monitoreo atmosférico se realizó con una trampa Burkard durante dos temporadas en 2012 y 2013 en las afueras de la ciudad.

Resultados & Conclusiones: Los períodos de polinización de los tipos de polen estudiados muestran un retraso en 2013 en comparación con el año anterior, presuntamente relacionado con una mayor cantidad de unidades de calor acumuladas en 2012. Sin embargo, la integral polínica para el período 2013 fue 1,4 veces mayor que 2012, hecho que no se explica por la precipitación acumulada sino por la hora del día en que ocurren los hidrometeoros. Las concentraciones de polen categorizadas en rangos muestran que los valores mayores coinciden con la ubicación urbana de las fuentes arbóreas mientras que las herbáceas muestran una asociación con un origen rural. En cuanto a la variabilidad intraestacional, la mayor proporción de la varianza del polen en el aire se acumula en la escala sinóptica (80 - 60%) con períodos entre 3 y 10 días. Durante 2012 predominaron las ondas largas (> 5,5 días) mientras que en 2013 predominaron las ondas medias (3,9 - 5,5 días).

Referencias

ALTINTAŞ, D, U., G. B. KARAKOÇ, M. YILMAZ, M. PINAR, S. G. KENDIRLI & H. ÇAKAN. 2004. Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey. Clin. Dev. Immunol. 11: 87–96. https://doi.org/10.1080/10446670410001670544

ARIZMENDI, C. M., J. R. SANCHEZ, N. E. RAMOS & G. I. RAMOS. 1993. Time series prediction with neural nets: Application to airborne pollen forecasting. Int. J. Biometeorol. 37: 139 – 144. https://doi.org/10.1007/BF01212623

AZNARTE, J. L. M., J. M. BENÍTEZ SÁNCHEZ, D. N. LUGILDE, C. DE LINARES FERNÁNDEZ, C. DÍAZ DE LA GUARDIA & F. A. SÁNCHEZ. 2007. Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst. Appl. 32: 1218-1225. https://doi.org/10.1016/j.eswa.2006.02.011

BASSETT, J., C. W. CROMPTON & D. W. WOODLAND. 1977. The biology of Canadian weeds. 21. Urtica dioica L. Can. J. Pl. Sci. 57: 491-498. https://doi.org/10.4141/cjps77-072

BAUER, H., H. GIEBL, R. HITZENBERGER, A. KASPER-GIEBL, G. REISCHL, F. ZIBUSCHKA & H. PUXBAUM. 2003. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. 108: 1-5. https://doi.org/10.1029/2003JD003545

BIANCHI, M. M. 1992. Calendario polínico de la ciudad de Mar del Plata (agosto 1987 - agosto 1989). Arch. argent. alerg. Inmunol. Clín. 23: 73-86.

BIANCHI, M. M. 1994. El muestreo aerobiológico en Mar del Plata: Aportes de una nueva metodología al análisis de polen. Su aplicación en el diagnóstico de la polinosis. Academia Nacional de Ciencias, Buenos Aires. Monografía N°10.

BIANCHI, M. M., C. M. ARIZMENDI & J. R. SANCHEZ. 1992. Detection of chaos: New approach to atmospheric pollen time-series analysis. Int. J. Biometeorol. 36: 172 - 175. https://doi.org/10.1007/BF01224822

BRIGHETTI, M. A., C. COSTA, P. MENESATTI, F. ANTONUCCI, S. TRIPODI & A. TRAVAGLINI. 2014. Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30: 25–33. https://doi.org/10.1007/s10453-013-9305-3

CADMAN, A., J. DAMES & A. P. S. TERBLANCHE. 1994. Airspora concentrations in the Vaal Triangle: monitoring and potential health effects. 1, pollen. Suid-Afrikaanse Tydskrif vir Wetenskap 90: 607-610.

CABRERA, A. L. 1976. Regiones fitogeográficas argentinas. En: W. F. Kugler (ed.), Enciclopedia Argentina de Agricultura y Jardinería. Tomo 2. 2da edición. pp. 1-85. Acme, Buenos Aires.

COMTOIS, P. 1998. Statistical analysis of aerobiological data. In: MANDRIOLI et al. (eds), Methods in Aerobiology. pp. 218–257. Pitagora Editrice, Bologna.

COMTOIS, P. 2000. The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia 16: 171-176. https://doi.org/10.1023/A:1007667531246

DAMIALIS, A., G. GIOULEKAS, CH. LAZOPOULOU, CH. BALAFOUTIS & D. VOKOLI. 2005. Transport of airborne pollen into the city of Thessaloniki: the effects of wind, direction speed and persistence. Int. J. Biometeorol. 49: 139-145. https://doi.org/10.1007/s00484-004-0229-z

DAMIALIS, A., E. KAIMAKAMIS, M. KONOGLOU, I. AKRITIDIS, C. TRAIDL-HOFFMANN & G. GIOULEKAS. 2017. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?. Sci. Rep. 7: 44535. https://doi.org/10.1038/srep44535

DRIESSEN, M. N. B. M., R. M. A. VAN HERPEN, R. P. M. MOELANDS & F. TH. M. SPIEKSMA. 1989. Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana 28: 37-44. https://doi.org/10.1080/00173138909431010

DRIESSEN, M. N. B. M., R. M. A. VAN HERPEN & L. O. M. J. SMITHUIS. 1990. Prediction of the start of the grass pollen season for the southern part of the Netherlands. Grana 29: 79-86. https://doi.org/10.1080/00173139009429978

EDMONDS, R. L. (ed.) 1979. Aerobiology: The Ecological Systems Approach. US/IBP Synthesis Series 10. Hutchinson & Ross, Inc. Dowden.

EMBERLIN, J. C., J. NORRIS-HILL & R. H. Bryant. 1990. A calendar for tree pollen in London. Grana 29: 301-310. https://doi.org/10.1080/00173139009428941

EMBERLIN, J., S. JONES, J. BAILEY, E. CAULTON, J. CORDEN, S. DUBBELS, J. EVANS, N. MCDONAGH, W. MILLINGTON, J. MULLINS, R. RUSSEL & T. SPENCER. 1994. Variation in the start of the grass pollen season at selected sites in the United Kingdom 1987–1992. Grana 33: 94-99. https://doi.org/10.1080/00173139409427839

ESKRIDGE, R. E., J. Y. KU, S. T. RAO, P. S. PORTER & I. G. ZURBENKO. 1997. Separating Different Scales of Motion in Time Series of Meteorological Variables. Bull. Am. Meteorol. Soc. 78: 1473-1483. https://doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2

FERNÁNDEZ-RODRÍGUEZ, S., P. DURÁN-BARROSO, I. SILVA-PALACIOS, R. TORMO-MOLINA, J. M. MAYA-MANZANO & A. GONZALO-GARIJO. 2016. Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Int. J. Biometeorol. 60: 1509-1517. https://doi.org/10.1007/s00484-016-1141-z

FRENGUELLI, G., E. BRICCHI, B. ROMANO, G. MINCIGRUCCI, F. FERRANTI & E. ANTOGNOZZI. 1992. The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 8: 415-418. https://doi.org/10.1007/BF02272908

FRENGUELLI, G., F. TH. M. SPIEKSMA, E. BRICCHI, B. ROMANO, G. MINCIGRUCCI, A. H. NIKKELS, W. DANKAART & F. FERRANTI. 1991. The influence of air temperature on the starting date of the pollen season of Alnus and Populus. Grana 30: 196-200. https://doi.org/10.1080/00173139109427799

GALÁN, C., J. EMBERLIN, E. DOMINGUEZ, R. H. BRYANT & F. VILLAMANDOS. 1995. A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba. Spain and London. UK. Grana 34: 189-198. https://doi.org/10.1080/00173139509429042

GALÁN, C., M. J. FUILLERAT, P. COMTOIS & E. DOMINGUEZ-VILCHES. 1998. Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int. J. Biometeorol. 41: 95–100. https://doi.org/10.1007/s004840050059

GARCÍA-MOZO, H., C. GALÁN, J. BELMONTE, D. BERMEJO, P. CANDAU, C. DÍAZ DE LA GUARDIA, B. ELVIRA, B. GUTIÉRREZ, V, JATO, I. SILVA, M. M. TRIGO, R. VALENCIA & I. CHUINE. 2009. Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric. For. Meteorol. 149: 256 – 262. https://doi.org/10.1016/j.agrformet.2008.08.013

GASSMANN, M. I. & C. F. PÉREZ. 2006. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50: 280-291. https://doi.org/10.1007/s00484-005-0021-8

GATZ, D. F. & A. N. DINGLE. 1963. Washout of ragweed pollen by rainfall. J. Geophys. Res. 68: 3641-3648. https://doi.org/10.1029/JZ068i012p03641

GULEV, S. K., T. JUNG & E. RUPRECHT. 2002. Climatology and Interannual Variability in the Intensity of Synoptic-Scale Processes in the North Atlantic from the NCEP–NCAR Reanalysis Data. J. of Clim. 15: 809-828. https://doi.org/10.1175/1520-0442(2002)015<0809:CAIVIT>2.0.CO;2

HERNÁNDEZ-CEBALLOS, M. A., H. GARCÍA-MOZO, J. A. ADAME, E. DOMÍNGUEZ-VILCHES, B. A. DE LA MORENA, J. P. BOLÍVAR & C. GALÁN. 2011. Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int. J. Biometeorol. 55: 17-34. https://doi.org/10.1007/s00484-010-0306-4

HEUSSER, C. J. 1971. Pollen and spores of Chile. Univ. Arizona Press, Tucson, AZ. https://doi.org/10.2307/1218275

HJELMROOS, M. 1992. Long-distance transport of Betula pollen grains and allergenic symptoms. Aerobiologia 8: 231-236. https://doi.org/10.1007/BF02071631

HIRST, J. M. 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39: 259-265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

HOGREFE, C., S. VEMPATY, S. T. RAO & P. S. PORTER. 2003. A comparison of four techniques for separating different time scales in atmospheric variables. Atmos. Environ. 37: 313-325. https://doi.org/10.1016/S1352-2310(02)00897-X

HUFFMAN, J. A., C. POHLKER, A. J. PRENNI, et al., 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13: 1767-1793.

ISAGI, Y., K. SUGIMURA, A. SUMIDA & H. ITO. 1997. How Does Masting Happen and Synchronize?. J. Theor. Biol. 187: 231–239. https://doi.org/10.1006/jtbi.1997.0442

JANZEN, D. H. 1976. Why bamboos wait so long to flower? Ann. Rev. Ecol. Syst. 7: 347-391. https://doi.org/10.1146/annurev.es.07.110176.002023

JATO, V., A. DOPAZO & M. J. AIRA. 2002. Influence of precipitation and temperature on airborne pollen concentration in Santiago de Compostela (Spain). Grana 41: 232-241. https://doi.org/10.1080/001731302321012022

KÄPYLÄ, M. & A. PENTTINEN. 1981. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20: 131-141. https://doi.org/10.1080/00173138109427653

KAWASHIMA, S. & Y. TAKAHASHI. 1999. An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana 38: 316-324. https://doi.org/10.1080/001731300750044555

KELLY, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. & Evol. 9: 465–471. https://doi.org/10.1016/0169-5347(94)90310-7

KOENIG, W. D. & J. M. H. KNOPS. 2005. The Mystery of Masting in Trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why?. Am. Scient. 93: 340-347. https://doi.org/10.1511/2005.4.340

KOTTEK, M., J. GRIESER, CH. BECK, B. RUDOLF & F. RUBEL. 2006. World map of the Köppen – Geiger climate classification updated. Meteorol. Z. 15: 259-263. https://doi.org/10.1127/0941-2948/2006/0130

LATORRE, F. 1997. Comparison between phenological and aerobiological patterns of some arboreal species of Mar del Plata (Argentina). Aerobiologia 13: 49–59. https://doi.org/10.1007/BF02694791

LATORRE, F. 1999a. El polen atmosférico como indicador de la vegetación y de su fenología floral. Tesis doctoral UBA. Buenos Aires. Argentina. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n3212_Latorre?p.s=TextQuery

LATORRE, F. 1999b. Differences between airborne pollen and flowering phenology of urban trees with reference to production, dispersal and interannual climate variability. Aerobiologia 15: 131-141.

LATORRE, F. & M. A. CACCAVARI. 2010. Diversidad polínica en el aire de Diamante (Entre Ríos, Argentina). Scientia Interfluvius 1: 7-17.

LEJOLY-GABRIEL, M. 1978. Recherches écologiques sur la pluie pollinique en Belgique. Acta Geographica Lovaniensia 13: 1-279.

LEVETIN, E. & P. K. VAN DE WATER. 2003. Pollen count forecasting. Immunology and allergy clinics of North America 23: 423-442. https://doi.org/10.1016/S0889-8561(03)00019-5

LEWIS, J. P. & M. B. COLLANTES. 1973. El Espinal Periestépico. Cienc. Invest. 29: 360-377. https://doi.org/10.1007/978-1-349-00152-1_3

LIEM, A. S. N. & J. GROOT. 1980. Anthesis and pollen dispersal of Holcus lanatus, Festuca rubra and Poa annua. Grana 19: 21-29. https://doi.org/10.1080/00173138009424984

LO, E. & E. LEVETIN. 2007. Influence of meteorological conditions on early spring pollen in the Tulsa atmosphere from 1987 - 2006. J. Allergy Clin.l Immunol. 119: 101. https://doi.org/10.1016/j.jaci.2006.11.612

MAJEED, H. T., C. PERIAGO, M. ALARCÓN & J. BELMONTE. 2018. Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia 34: 375-388. https://doi.org/10.1007/s10453-018-9520-z

MAKRA, L., M. JUHÁSZ, J. MIKA, A. BARTZOKAS, R. BÉCZI & Z. SÜMEGHY. 2007. Relationship between the Péczely’s large‐scale weather types and airborne pollen grain concentrations for Szeged, Hungary. Grana 46: 43-56. https://doi.org/10.1080/00173130601080704

MCDONALD, J. E. 1962. Collection and washout of airborne pollens and spores by raindrops. Science 135: 435-437. https://doi.org/10.1126/science.135.3502.435

MCDONALD, J. E. 1964. Pollen wettability as a factor in washout by raindrops. Science 143: 1180-1181. https://doi.org/10.1126/science.143.3611.1180

MÄKINEN, Y. 1977. Correlation of atmospheric spore frequencies with meteorological data. Grana 16: 49-53. https://doi.org/10.1080/00173134.1977.11864652

MARKGRAF, V. & H. L. D'ANTONI. 1978. Pollen flora of Argentina. Modern spore and pollen types of Pteridophyta, Gymnospermae and Angiospermae. The Univ. Arizona Press, Tucson. AZ.

MARLETTO, V., G. P. BRANZI & M. SIROTTI. 1992. Forecasting flowering dates of lawn species with air temperature: application boundaries of the linear approach. Aerobiologia 8: 75-83. https://doi.org/10.1007/BF02291333

MASAKA, K. & SH. MAGUCHI. 2001. Modeling the masting behavior of Betula platyphylla var. japonica using the Resource Budget Model. Ann. Bot. 88: 1049 -1055. https://doi.org/10.1006/anbo.2001.1547

MIYAZAKI, Y. 2013. Dynamics of internal carbon resources during masting behavior in trees. Ecol. Res. 28: 143–150. https://doi.org/10.1007/s11284-011-0892-6

MORELLO, J., S. D. MATTEUCCI, A. F. RODRÍGUEZ & M. E. SILVA. 2012. Ecorregiones y complejos ecosistémicos argentinos. Capítulo 11: Espinal. 1era ed. Orientación gráfica editora, Buenos Aires.

MULLENDERS, W., M. DIRICKX, D. VAN DER HAEGEN, Y. BASTIN-SERVAIS & M. DESAIR COREMANS. 1972. La pluie pollinique à Louvain - Heverlee en 1971. Louvain Medical 91: 159-176.

NILSSON, S. & S. PERSSON. 1981. Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana 21: 179-82. https://doi.org/10.1080/00173138109427661

NORRIS-HILL, J. 1998. A method to forecast the start of Betula, Platanus and Quercus pollen seasons in North London. Aerobiologia 14: 165-170. https://doi.org/10.1007/BF02694201

O’ROURKE, M. K. 1990. Pollen re-entrainment: contributions to the pollen rain in an arid environment. Grana 29: 147–151. https://doi.org/10.1080/00173139009427745

OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F. BIGAZOLI, P. TOGNETTI, I. BARBERIS, H. M. MATURO, R. ARAGÓN, P. I. CAMPANELLO, D. PRADO, M. OESTERHELD & R. J. C. LEÓN. 2018. Unidades de vegetación de la Argentina. Ecol. Aust. 28: 40 – 63. https://doi.org/10.25260/EA.18.28.1.0.399

PATHIRANE, L. 1975. Graphical determination of the main pollen season. Pollen Spores 17: 609-610.

PÉREZ, C. F. 2000. Caracterización de la nube polínica y determinantes meteorológicos de la dispersión del sistema urbano-rural de Mar del Plata. Tesis doctoral. Universidad Nacional de Mar del Plata, Mar del Plata. Argentina.

PÉREZ, C. F., M. I. GASSMANN & M. Covi. 2009. An evaluation of the airborne pollen–precipitation relationship with the superposed epoch method. Aerobiologia 25: 313–320. https://doi.org/10.1007/s10453-009-9135-5

PÉREZ, C. F., M. I. GASSMANN, N. TONTI & L. CURTO. 2020b. Panorama sobre la producción, el transporte y depósito de aerosoles de origen biológico. Meteorologica 45: 1 – 24.

PÉREZ, C. F., M. I. GASSMANN, G. A. ULKE & R. MERINO. 2020a. Diversidad polínica atmosférica en la ciudad de Sunchales: agosto - noviembre 2012, agosto - diciembre 2013. Bol. Soc. Argent. Bot. 55: 573-585. https://doi.org/10.31055/1851.2372.v55.n4.25408

PETERNEL, R., L. SRNEC, J. ČULIG, K. ZANINOVIĆ, B. MITIĆ & I. VUKUŠIĆ. 2004. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation. Int. J. Biometeorol. 48: 186–191. https://doi.org/10.1007/s00484-004-0202-x

PIRE, S. M., L. M. ANZÓTEGUI & G. A. CUADRADO. (Eds.) 1998. Flora polínica del Nordeste Argentino. Volumen I. EUDENE – UNNE. Corrientes.

PIRE, S. M., L. M. ANZÓTEGUI & G. A. CUADRADO. (Eds.) 2001. Flora polínica del Nordeste Argentino. Volumen II. EUDENE – UNNE. Corrientes.

RANTA, H., A. OKSANEN, T. HOKKANEN, K. BONDESTAM & S. HEINO. 2005. Masting by Betula-species; applying the resource budget model to north European data sets. Int. J. Biometeorol. 49: 146–151. https://doi.org/10.1007/s00484-004-0228-0

SCRIVEN, R. A. & B. E. A. FISHER. 1975. The long range transport of airborne material and its removal by deposition and washout—I. General considerations. Atmos. Environ. (1967), 9: 49–58. https://doi.org/10.1016/0004-6981(75)90053-0

SEELEY, S. D., J. L. ANDERSON, J. W. FRISBY & M. G. WEEKS. 1996. Temperature characteristics of anthesis phenology of deciduous fruit trees. Acta Horticultivae 416: 56-63. https://doi.org/10.17660/ActaHortic.1996.416.6

SKJØTH, C. A., T. BECKER, P. V. ØRBY, C. GEELS, V. SCHLÜNSSEN, T. SIGSGAARD, J. H. BØNLØKKE, J. SOMMER, P. SØGAARD & O. HERTEL. 2010. Urban sources caused elevated grass pollen concentrations. Dissertation, 9th International Congress on Aerobiology. Buenos Aires.

SMITH, M. & J. EMBERLIN. 2006. A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int. J. Biometeorol. 50: 233–242. https://doi.org/10.1007/s00484-005-0010-y

SOLMAN, S. A. & C. G. MENÉNDEZ. 2002. ENSO-Related Variability of the Southern Hemisphere Winter Storm Track over the Eastern Pacific–Atlantic Sector. J. Atmos. Sci. 59: 2128–2141. https://doi.org/10.1175/1520-0469(2002)059<2128:ERVOTS>2.0.CO;2

STACH, A., J. EMBERLIN, M. SMITH, B. ADAMS-GROOM & D. MYSZKOWSKA. 2008. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Kraków) and the United Kingdom (Worcester and London). Int. J. Biometeorol. 52: 311–321. https://doi.org/10.1007/s00484-007-0127-2

THOMPSON, R. S., K. H. ANDERSON & P. J. BARTLEIN. 2000. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America — Hardwoods. U.S. Geological Survey Professional Paper 1650-B. U.S. Department of the Interior U.S. Geological Survey. https://doi.org/10.3133/pp1650C

VÁZQUEZ, L. M., C. GALÁN & E. DOMÍNGUEZ-VILCHES. 2003. Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). Int. J. Biometeorol. 48: 83–90. https://doi.org/10.1007/s00484-003-0187-x

VELASCO, I. & J. M. FRITSCH. 1987. Mesoscale convective complexes in the Americas. J. Geophys. Res. 92(D8): 9591- 9613. https://doi.org/10.1029/JD092iD08p09591

VOUKANTSIS, D., K. KARATZAS, S. JAEGER, U. BERGER & M. SMITH. 2013. Analysis and forecasting of airborne pollen-induced symptoms with the aid of computational intelligence methods. Aerobiologia 29: 175–185. https://doi.org/10.1007/s10453-012-9271-1

WILKS, D. S. 2011. Statistical methods in the atmospheric sciences. International Geophysics Series 100, 3rd ed. Elsevier Academic Press. Amsterdam, Boston, Heilderberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.

ZALOM, F. G., P. B. GOODELL, L. T. WILSON, W. W. BARNETT & W. J. BENTLEY. 1983. Degree-days: the calculation and use of heat units in pest management. Leaflet No. 21373. pp 2 - 10. Division of Agriculture and Natural Resources. Berkeley CA, 94720: University of California.

ZHANG, Y., L. BIELORY, T. CAI, Z. MI & P. GEORGOPOULOS. 2015. Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos. Environ. 103: 297 – 306. https://doi.org/10.1016/j.atmosenv.2014.12.019

Archivos adicionales

Publicado

2021-09-02

Número

Sección

Palinología

Cómo citar

“Análisis Exploratorio De Las Variaciones Estacionales E Intraestacionales De Los Principales Tipos polínicos En La atmósfera De La Ciudad De Sunchales, Argentina”. 2021. Boletín De La Sociedad Argentina De Botánica 56 (3). https://doi.org/10.31055/1851.2372.v56.n3.31998.

Artículos similares

11-20 de 416

También puede Iniciar una búsqueda de similitud avanzada para este artículo.