Estudios citogenéticos y morfo-anatómicos comparativos entre diploides y poliploides de Solanum elaeagnifolium (Solanaceae).

Autores/as

  • Miguel Mancini Cátedra de Morfología Vegetal, Fac. Cs. Exactas, Físicas y Nat., UNC
  • Franco Chiarini Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba)
  • Ana Calviño Instituto Multidisciplinario de Biología Vegetal, CONICET-UNC.
  • Laura Stiefkens Cátedra de Morfología Vegetal, Fac. Cs. Exactas, Físicas y Nat., UNC. IMBIV

DOI:

https://doi.org/10.31055/1851.2372.v56.n2.32517

Palabras clave:

Estomas, masa de semillas, plasticidad fenotípica, poliploidía, Solanum elaeagnifolium.

Resumen

Introducción y objetivos: Solanum elaeagnifolium, morfológicamente variable, se multiplica sexual- y asexualmente y es invasora en distintas partes del mundo. Se desconoce su rango de origen y como se propagó fuera de él. En Argentina existen poblaciones naturales diploides, tetraploides y hexaploides. Presenta tres linajes genéticos claramente distanciados, dos en Sudamérica con poblaciones poliploides y un tercero solo con diploides en América del Norte y áreas invadidas. Nuestro objetivo es detectar relaciones entre nivel de ploidía, linaje y procedencia con características morfológicas de las plantas y variables climáticas. 

M&M: Se realizaron preparados cromosómicos y mediciones de caracteres de epidermis, flor y semilla, en individuos 2x, 4x y 6x de diferente linaje y origen geográfico. Se compararon los valores medios obtenidos mediantes tests estadísticos y la similitud global se evaluó mediante análisis multivariados. 

Resultados: Únicamente número de estomas y masa de semillas resultaron significativamente diferentes entre niveles de ploidía: el citotipo tetraploide, presenta menor número de estomas y semillas más pesadas. Las restantes variables morfoanatómicas contribuyen a la diferenciación global de los citotipos, aunque no se comprobó que las medias variaran proporcionalmente con el aumento de ploidía. La precipitación media anual contribuye a la discriminación entre citotipos, coincidiendo la distribución occidental de los tetraploides con la diagonal árida en Argentina. 

Conclusiones: Las diferencias en el tetraploide no pueden atribuirse a un efecto de la poliploidización. El patrón global de datos podría explicarse por múltiples orígenes independientes de la poliploidía, plasticidad fenotípica y presiones del ambiente (temperatura, precipitaciones, distintos ensambles de polinizadores). 

Referencias

AASAMAN, K., A. SOBER & M. RAHI. 2001. Leaf anatomical characteristic associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Austral. J. Pl. Physiol. 28: 765-774. https://doi.org/10.1071/PP00157

ACOSTA, M.C., G. BERNARDELLO, M. GUERRA & E.A. MOSCONE. 2005. Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). Taxon 54: 713-723. https://doi.org/10.2307/25065428

ALCÁNTAR VÁZQUEZ, J.P. 2014. La Poliploidía y su importancia evolutiva. Temas Cienc. Tecnol. 18: 17-29.

ANDERSON, M.J., D.C. WALSH, K. ROBERT CLARKE, R.N. GORLEY & E. GUERRA-CASTRO. 2017. Some solutions to the multivariate Behrens–Fisher problem for dissimilarity based analyses. Aust. N. Z. J. Stat. 59: 57-79. https://doi.org/10.1111/anzs.12176

BARP, E.A., G.L.G. SOARES, G. GOSMANN, A.M. MACHADO, C. VECCHI & G.R. MOREIRA. 2006. Phenotypic plasticity in Passiflora suberosa L. (Passifloraceae): induction and reversion of two morphs by variation in light intensity. Braz. J. Biol. 66: 853-862. https://doi.org/10.1590/S1519-69842006000500011

BARTHLOTT, W. & D.R. HUNT. 2000. Seed diversity in the Cactaceae subfamily Cactoideae. Succ. PI. Res. 5: 1-173.

BATES, D., M. MAECHLER, B. BOLKER & S. WALKER. 2015. Fitting Linear Mixed-Effects Models using Ime4. J. Stat. Softw. 67: 1-48. https://doi.org/10.18637/jss.v067.i01

BEAULIEU, J. M., A.T. MOLES, I.J. LEITCH, M.D. BENNETT, J.B. DICKIE & C.A. KNIGHT. 2007. Correlated evolution of genome size and seed mass. New Phytol. 173: 422-437. https://doi.org/10.1111/j.1469-8137.2006.01919.x

BEAULIEU, J.M., I.J. LEITCH, S. PATEL, A. PENDHARKAR & C.A. KNIGHT. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179: 975-986. https://doi.org/10.1111/j.1469-8137.2008.02528.x

BIVAND, R.S., E. PEBESMA & V. GOMEZ-RUBIO. 2013. Applied spatial data analysis with R. Use R! Second edition. Springer-Verlag New York. https://doi.org/10.1007/978-1-4614-7618-4

BOHS, L. & R.G. OLMSTEAD. 2001. A reassessment of Normania and Triguera (Solanaceae). Pl. Syst. Evol. 228: 33-48. https://doi.org/10.1007/s006060170035

BOHS, L. 2005. Major clades in Solanum based on ndhF sequence data. In: HOLLOWELL V, KEATING R, LEWIS W, CROAT T (eds) A Festschrift for William D’Arcy. Monogr. Syst. Bot. Missouri Bot. Gard., vol 104, pp 27–50. Missouri Botanical Garden Press, St. Louis, Missouri.

BOHS, L., T. WEESE, N. MYERS, V. LEFGREN, N. THOMAS, A. VAN WAGENEN & S. STERN. 2007. Zygomorphy and heteranthery in Solanum in a phylogenetic context. Acta Hort. 745: 201. https://doi.org/10.17660/ActaHortic.2007.745.8

BOLIGON, D. S. 2007. Variação nos tricomas de Solanum sisymbriifolium (Solanaceae) e herbivoria por larvas de Gratiana spadicea (Coleoptera, Chrysomelidae). Tesis de Maestría en Biología Animal. Universidade Federal do Rio Grande do Sul, Porto Alegre.

BORCARD, D., F. GILLET & P. LEGENDRE. 2011. Numerical ecology with R. Use R! Springer-Verlag New York. DOI: 10.1007/978-1-4419-7976-6. https://doi.org/10.1007/978-1-4419-7976-6

BOYD, J.W., D.S. MURRAY & R.J. TYRL .1984. Silverleaf nightshade, Solanum elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 38: 210-217. https://doi.org/10.1007/BF02858833

BRETAGNOLLE, F., J.D. THOMPSON & R. LUMARET. 1995. The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dactylis glomerata L. Ann. Bot. Mem. 76: 607– 615. https://doi.org/10.1006/anbo.1995.1138

BRUNIARD, E. D. 1982. La diagonal árida argentina: un límite climático real. Revista Geogr. 95: 5-20.

BRUNO, G., M.T. COSA & N. DOTTORI. 1999. Ontogenia de tricomas estrellados en Solanum elaeagnifolium (Solanaceae). Kurtziana 27: 169-72.

BUCHMANN, S. L. & J.H. CANE. 1989. Bees assess pollen returns while sonicating Solanum flowers. Oecologia 81: 289-294. https://doi.org/10.1007/BF00377073

BURROWS, G.E., R.G. WHITE, J.D.I. HARPER, R.D. HEADY, R. STANTON, X. ZHU, H. WU & D. LEMERLE. 2013. Intrusive trichome bases in the leaves of silverleaf nightshade (Solanum elaeagnifolium; Solanaceae) do not facilitate fluorescent tracer uptake. Amer. J. Bot. 100: 2307–2317. https://doi.org/10.3732/ajb.1300034

CABRERA, A. L. & A. WILLINK. 1982. Biogeografía de América Latina. Serie Biología. Organización de Estados Americanos: Washington, DC.

CADENA IÑIGUEZ, J., L.M. RUIZ POSADAS, C. TREJO LÓPEZ, P. SÁNCHEZ GARCÍA & J.F. AGUIRRE MEDINA. 2001. Regulación del Intercambio de gases y relaciones hídricas en chayote Sechium edule (Jacq.) Swartz. Revista Chapingo Ser. Hort. 7: 21-35. https://doi.org/10.5154/r.rchsh.2000.11.079

CHIARINI, F. E. & G.E. BARBOZA. 2007. Placentation patterns and seed number in fruits of South American Solanum subgen. Leptostemonum (Solanaceae) species. Darwiniana 45: 163-174.

CHIARINI, F. 2014. Variation in rDNA loci of polyploidy Solanum elaeagnifolium (Solanaceae). New Zealand J. Bot. 52: 277-284. https://doi.org/10.1080/0028825X.2014.888087

CHIARINI, F.E., M.A. SCALDAFERRO, G. BERNARDELLO & ACOSTA, M. C. 2018. Cryptic genetic diversity in Solanum elaeagnifolium (Solanaceae) from South America. Austral. J. Bot. 66: 531-540. https://doi.org/10.1071/BT17245

CHRISTODOULAKIS, N.S., P.N. LAMPRI & C. FASSEAS. 2009. Structural and cytochemical investigation of the leaf of silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Austral. J. Bot. 57: 432-438. https://doi.org/10.1071/BT08210

COLEMAN, J.R. & M.A. COLEMAN. 1982. Reproductive biology of an andromonoecious Solanum (S. palinacanthum Dunal). Biotropica 14: 69-75. https://doi.org/10.2307/2387763

COMAI, L. 2005. The advantages and disadvantages of being polyploidy. Nat. Rev. Gen. 6: 836-846. https://doi.org/10.1038/nrg1711

COSA, M.T., G. BRUNO & N. DOTTORI. 1998. Anatomía de los órganos vegetativos en Solanum juvenale y su comparación con S. elaeagnifolium (Solanaceae). Anales Inst. Biol. Univ. Auton. Mexico, Bot. 69: 9-22.

D’AMBROGIO de ARGÜESO, A. 1986. Manual de Técnicas en Histología Vegetal. Ed. Hemisferio Sur, Buenos Aires, Argentina.

DE LUCA, P. A., S. BUCHMANN, C. GALEN, A.C. MASON & M. VALLEJO MARÍN. 2019. Does body size predict the buzz pollination frequencies used by bees? Ecol. Evol. 9: 4875-4887. https://doi.org/10.1002/ece3.5092

DE MALACH, N., R. RON & R. KADMON. 2019. Mechanisms of seed mass variation along resource gradients. Ecol. Letters 22: 181-189. https://doi.org/10.1111/ele.13179

DEL VITTO, L. A. & E.M. PETENATTI. 2015. Sobre la presencia de Solanum rostratum (Solanaceae) en Sudamérica: una neófita tóxica de gran potencial como maleza. Revista Fac. Ci. Agrar. Univ. Nac. Cuyo 47: 109-121.

DILCHER, D.L. 1974. Approaches to the identification of angiosperm leaf remains. Bot. Rev. 40: 1-157. https://doi.org/10.1007/BF02860067

FERNÁNDEZ, O.A. & R.E. BREVEDAN. 1972. Regeneración de Solanum elaeagnifolium Cav. a partir de fragmentos de sus raíces. Darwiniana 17: 433-442.

FICK, S.E. & R.J. HIJMANS. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302-4315. https://doi.org/10.1002/joc.5086

GABRIEL, J., P. PORCO, A. ANGULO, J. MAGNE, J. LA TORRE J & P. MAMANI. 2011. Resistencia genética a estrés hídrico en variedades de papa (Solanum tuberosum L.) bajo invernadero. Rev. Latinoam. Papa 16: 173-208. https://doi.org/10.37066/ralap.v16i2.178

GARCÍA, M., D. JÁUREGUI & D. PÉREZ. 2000. Características del indumento en hojas de cuatro especies del género Passiflora L. (Passifloraceae). Acta Bot. Venez. 23: 1-8.

GARCÍA OSUNA, H. T., L. ESCOBEDO BOCARDO, V. ROBLEDO-TORRES, A. BENAVIDES MENDOZA & F. RAMÍREZ GODINA. 2015. Germinación y micropropagación de tomate de cáscara (Physalis ixocarpa) tetraploide. Rev. Mexicana Cienc. Agríc. 6: 2301-2311. https://doi.org/10.29312/remexca.v0i12.763

GARRIDO, J. L., P.J. REY & C.M. HERRERA. 2005. Fuentes de variación en el tamaño de la semilla de la herbácea perenne Helleborus foetidus L. (Ranunculaceae). Anales. Jard. Bot. Madrid 62: 115-125. https://doi.org/10.3989/ajbm.2005.v62.i2.10

GARRIDO, S., G.M. DEL CAMPO, M.V. ESTELLER, R. VACA & J. LUGO. 2005. Heavy metals in soil treated with sewage sludge composting, their effect on yield and uptake of broad bean seeds (Vicia faba L.). Water Air Soil Pollut. 166: 303-319. https://doi.org/10.1007/s11270-005-5269-4

GOPURENKO, D., A. WANG, X. ZHU, B.J. LEPSCHI & H. WU. 2014. Origins and diversity of exotic silverleaf nightshade (Solanum elaeagnifolium) present in Australia as determined by sequence analysis of a chloroplast intergenic spacer region. Nineteenth Australasian Weeds Conference.

GOULD, F.W. 1957. Pollen size as related to polyploidy and speciation in the Andropogon saccharoides - A. barbinodis complex. Brittonia 9: 71-75. https://doi.org/10.2307/2804771

GUERRA, M. 1983. O uso da Giemsa na citogenética vegetal. Ci. & Cult. 35: 190-193.

HAUKE, J. & T. KOSSOWSKI. 2011. Comparison of values of Pearson’s and Spearman’s Correlation Coefficients on the same sets of data. Quaest. Geogr. 30: 87-93. https://doi.org/10.2478/v10117-011-0021-1

HIJMANS, R.J. 2019. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://CRAN.R-project.org/package=raster

HO, J., T. TUMKAYA, S. ARYAL, H. CHOI & A. CLARIDGE-CHANG. 2018. Moving beyond P values: Everyday data analysis with estimation plots. BioRxiv https://doi.org/10.1101/377978

HUNZIKER, A.T. 2001. Genera Solanacearum: The genera of Solanaceae Illustrated, Arranged According to a New System. Gantner, Ruggell (Liechtenstein).

INAMDAR, J.A. & M. GANGADHARA. 1977. Studies on the trichomes of some Euphorbiaceae. Feddes Repert. 88: 103-111. https://doi.org/10.1002/fedr.4910880105

JENSEN-HAARUP, A.C. 1908. Biological researches among the Argentine bees with special reference to the flowers they visit. In: FRIESE, H. (Ed.) Die Apiden (Blumenwespen) von Argentina. Fl. & Fauna 1908: 97–107.

JOHNSON, H.B. 1975. Plant pubescence: an ecological perspective. Bot. Rev. 41: 233-258. https://doi.org/10.1007/BF02860838

JÖRGENSEN, P. 1909. Beobachtungen über Blumenbesuch, Biologie, Verbreitung, usw. der Bienen von Mendoza (Hymenoptera). Deutsche Entomol. Zeitschr. 1: 54–65. https://doi.org/10.1002/mmnd.48019090109

JOSSE, J. & F. HUSSON. 2016. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 70: 1-31. https://doi.org/10.18637/jss.v070.i01

KLINGENBERG, C. P. 2014. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369: 20130249. https://doi.org/10.1098/rstb.2013.0249

KNAPP, S., L. BOHS, M. NEE & D.M. SPOONER. 2004. Solanaceae: a model for linking genomics with biodiversity. Compar. Funct. Genom. 5: 285-291. https://doi.org/10.1002/cfg.393

KNAPP, S., E. SAGONA, A.K.Z. CARBONELL & F. CHIARINI. 2017. A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys 84: 1-104. https://doi.org/10.3897/phytokeys.84.12695

KUZNETSOVA, A., P.B. BROCKHOFF & R.H.B. CHRISTENSEN. 2017. ImerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82: 1-26. https://doi.org/10.18637/jss.v082.i13

LEVIN, R.A., N.R. MYERS & L. BOHS. 2006. Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Amer. J. Bot. 93: 157-169. https://doi.org/10.3732/ajb.93.1.157

LEWIS, W.H. 1980. Polyploidy in Species Populations. In: LEWIS W.H. (ed.) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_6

MABLE, B.K. 2003. Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci. 8: 582-590. https://doi.org/10.1016/j.tplants.2003.10.006

MEKKI, M. 2007. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO bulletin 37: 114-118. https://doi.org/10.1111/j.1365-2338.2007.01094.x

MINCHIN, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89-107. https://doi.org/10.1007/978-94-009-4061-1_9

MIONE, T. & G.J. ANDERSON. 1992. Pollen ovule ratios and breeding system evolution in Solanum section Basarthrum. Amer. J. Bot. 79: 279-287. https://doi.org/10.1002/j.1537-2197.1992.tb14549.x

MKULA, N.P. 2006. Allelopathic Interference of Silverleaf Nightshade (Solanum elaeagnifolium Cav.) with the Early Growth of Cotton (Gossypium hirsitum L.). Master degree in Agronomy. Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria. 100 pp.

MOSCONE, E.A. 1992. Estudios de cromosomas meióticos en Solanaceae de Argentina. Darwiniana 31: 261-297.

MURRAY, B.R., A.H.D. BROWN, C.R. DICKMAN & M.S. CROWTHER. 2004. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31: 379-388. https://doi.org/10.1046/j.0305-0270.2003.00993.x

OKSANEN, J. 2015. Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

OKSANEN, J., F.G. BLANCHET, M. FRIENDLY, R. KINDT, P. LEGENDRE, D. MCGLINN, P.R. MINCHIN, R.B. O'HARA, G.L. SIMPSON, P. SOLYMOS, M.H.H. STEVENS, E. SZOECS & H. WAGNER. 2019. vegan: Community Ecology Package. R package version 2.5-5. https://CRAN.R-project.org/package=vegan

OLMSTEAD, R.G. & J.D. PALMER. 1997. Implications for the Phylogeny, Classification, and Biogeography of Solanum from cpDNA Restriction Site Variation. Syst. Bot. 22: 19-29. https://doi.org/10.2307/2419675

OLMSTEAD, R.G. & L. BOHS. 2007. A summary of molecular systematic research in Solanaceae: 1982–2006. In: SPOONER, D.M., L. BOHS, J. GIOVANNONI, R.G. OLMSTEAD, D. Shibata (eds) Solanaceae VI: genomics meets biodiversity. Proceedings of the sixth international Solanaceae conference. International Society for Horticultural Science, Leuven. Acta Hort. 745: 255–268. https://doi.org/10.17660/ActaHortic.2007.745.11

OLMSTEAD, R.G., L. BOHS, H.A. MIGID, E. SANTIAGO-VALENTIN, V.F. GARCIA & S.M. COLLIER. 2008. A molecular phylogeny of the Solanaceae. Taxon 57: 1159–1181. https://doi.org/10.1002/tax.574010

ORR-WEAVER, T. L. 2015. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 31: 307-315. https://doi.org/10.1016/j.tig.2015.03.011

OTTO, S.P. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462. https://doi.org/10.1016/j.cell.2007.10.022

PEBESMA, E.J. & R.S. BIVAND. 2005. Classes and methods for spatial data in R. R News 5: 9-13. https://cran.r-project.org/doc/Rnews/.

PEGTEL, D.M. 1999. Effect of ploidy level on fruit morphology, seed germination and juvenile growth in scurvy grass (Cochlearia officinalis L. s.l., Brassicaceae). Pl. Spec. Biol. 14: 201–215. https://doi.org/10.1046/j.1442-1984.1999.00019.x

PETENATTI, E.M. & L.A. DEL VITTO. 1991. Morfología y ontogenia de las anteras de Solanum elaeagnifolium (Solanaceae) y especies afines y su posible relación con los visitantes. Kurtziana 21: 195-204.

PIERCE, S. 2007. The Jeweled Armor of Tillandsia—Multifaceted or Elongated Trichomes Provide Photoprotection. Aliso 23: 44-52. https://doi.org/10.5642/aliso.20072301.06

PLITMANN, U. & D. LEVIN. 1983. Pollen-pistil relationships in the Polemoniaceae. Evolution 37: 957-967. https://doi.org/10.1111/j.1558-5646.1983.tb05624.x

PRABHAKAR, M. 2004. Structure, nomenclature and classification of stomata. Acta Bot. Sin. 46: 242-252.

RASBAND, W. S. 1997–2018. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. Disponible en: http://imagej.nih.gov/ij.

R CORE TEAM. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Disponible en: https://www.r-project.org/.

ROY, B.A., M. L. STANTON & S.M. EPPLEY. 1999. Effects of environmental stress of leaf hair density and consequences for selection. J. Evol. Biol. 12: 1089-1103. https://doi.org/10.1046/j.1420-9101.1999.00107.x

SAKAI, S. & A. SAKAI. 1994. Flower size-dependent variation in seed size: theory and a test. Amer. Naturalist. 145: 918-934. https://doi.org/10.1086/285776

SÄRKINEN, T., L. BOHS, R. G. OLMSTEAD & S. KNAPP. 2013. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. B. M. C. Evol. Biol. 13: 214. https://doi.org/10.1186/1471-2148-13-214

SCALDAFERRO, M., F. CHIARINI, F.F. SANTIÑAQUE, G. BERNARDELLO & E.A. MOSCONE. 2012. Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genet. Resources Crop Evol. 59: 1833-1847. https://doi.org/10.1007/s10722-012-9807-9

SIEBERT, M. W. 1975. Candidates for the biological control of Solanum elaeagnifolium Cav. (Solanaceaeae) in South Africa. 1 Laboratory studies on the biology of Gratiana lutescens (Boh.) and Gratiana pallidula (Boh.) (Coleoptera: Cassididae). J. Entomol. Soc. Southern Africa 38: 297-304.

SOLTIS, D.E., V.A. ALBERT, J. LEEBENS-MACK, C.D. BELL, A.H. PATERSON, C. ZHENG, D. SANKOFF, C.W. DE PAMPHILIS, P. KERR WALL & P.S. SOLTIS. 2009. Polyploidy and angiosperm diversification. Amer. J. Bot. 96: 336–348. https://doi.org/10.3732/ajb.0800079

STACE, C.A. 1965. Cuticular studies as an aid to plant taxonomy. Bull. Brit. Mus. (Nat. Hist.), Bot. 4: 88.

STANTON, R., J.W. HEAP, R.J. CARTER & H. WU. 2009. Biology of silverleaf nightshade (Solanum elaeagnifolium). In: PANETTA, F.D. (ed.) The biology of Australian weeds Volume 3, pp. 274–293, R.G. and F.J. Richardson, Melbourne.

STANTON, R., H. WU & D. LEMERLE. 2012. Factors affecting silverleaf nightshade (Solanum elaeagnifolium) germination. Weed Sci. 60: 42-47. https://doi.org/10.1614/WS-D-11-00105.1

STEBBINS, G.L. 1971. Chromosomal evolution in higher plants. 216 pp. Edward Arnold, London, UK.

STEBBINS, G.L. 1985. Polyploidy, Hybridization, and the Invasion of New Habitats. Ann. Missouri Bot. Gard. 72: 824-82. https://doi.org/10.2307/2399224

STRASBURGER, E., F. NOLL, H. SCHENCK & A. SCHIMPER. 1986. Tratado de Botánica. Barcelona, España, EM Marin. 1098 pp.

TSCHEULIN, T. & T. PETANIDOU. 2013. The presence of the invasive plant Solanum elaeagnifolium deters honeybees and increases pollen limitation in the native co-flowering species Glaucium flavum. Biol. Invas. 15: 385–393. https://doi.org/10.1007/s10530-012-0293-y

VALLEJO-MARIN, M., J.S. MANSON, J.D. THOMSON & S.C.H. BARRETT. 2009. Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. J. Evol. Biol. 22: 828-839. https://doi.org/10.1111/j.1420-9101.2009.01693.x

VARGAS, E. M., E. CASTRO, G. MACAYA & O.J. ROCHA. 2003. Variación del tamaño de frutos y semillas en 38 poblaciones silvestres de Phaseolus lunatus (Fabaceae) del Valle Central de Costa Rica. Revista Biol. Trop. 51: 707-724.

VAUGHTON, G. & M. RAMSEY. 1998. Sources and consequences of seed mass variation in Banksia marginata (Proteaceae). J. Ecol. 86: 563-573. https://doi.org/10.1046/j.1365-2745.1998.00279.x

VIGNA M. R., O.A. FERNÁNDEZ & R.E. BREVEDAN. 1981. Biología y control de Solanum elaeagnifolium Cav. (Revisión bibliográfica). Revista Fac. Agron. Veteri. 2: 79-89.

VONHOF, M.J. & L.D.HARDER. 1995. Size-number trade-off and pollen production by papilionaceous legumes. Amer. J. Bot. 82: 230-238. https://doi.org/10.1002/j.1537-2197.1995.tb11491.x

WENDEL, J.F. 2000. Genome evolution in polyploids. Pl. Molec. Biol. 42: 225-249. https://doi.org/10.1007/978-94-011-4221-2_12

WOODMAN, R.L. & G.W. FERNÁNDES. 1991. Differential mechanical defense: herbivory, evapotranspiration, and leaf-hairs. Oikos 60:11-19.

ZARLAVSKY, G.E. 2014. Histología Vegetal: técnicas simples y complejas. Sociedad Argentina de Botánica, Buenos Aires, Argentina.

ZHU, X.C., H.W. WU, H. RAMAN, D. LEMERLE, R. STANTON & G.E. BURROWS. 2012. Evaluation of simple sequence repeat (SSR) markers from Solanum crop species for Solanum elaeagnifolium. Weed Res. 52: 21-223. https://doi.org/10.1111/j.1365-3180.2012.00908.x

ZHU, X.C., H.W. WU, R. STANTON, G.E. BURROWS, D. LEMERLE & H. RAMAN. 2013. Morphological variation of Solanum elaeagnifolium in south-eastern Australia. Weed Res. 53: 344. https://doi.org/10.1111/wre.12032

Descargas

Publicado

2021-06-10

Número

Sección

Anatomía y Morfología

Cómo citar

“Estudios citogenéticos Y Morfo-anatómicos Comparativos Entre Diploides Y Poliploides De Solanum Elaeagnifolium (Solanaceae)”. 2021. Boletín De La Sociedad Argentina De Botánica 56 (2). https://doi.org/10.31055/1851.2372.v56.n2.32517.

Artículos similares

1-10 de 571

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a