Effect of using air-induction nozzles and adjuvants on the quality of pesticide application
Main Article Content
Abstract
Spraying of phytosanitary products must ensure efficient pest control while avoiding losses that could damage human health and environment. The objective of the study was to evaluate the effect of conventional hollow cone and air-induced hydraulic nozzles, and the addition of an adjuvant (Methylated Seed Oil [MSO]) upon the application quality of a fungicide (penetration, distribution, and uniformity) and losses due to endodrift on wheat and soybean canopies. In each crop, the experimental design was completely randomized,
with four replications and a factorial arrangement of nozzles x adjuvant. Droplet spectrum was evaluated by using water-sensitive cards, and brilliant blue as a tracer in the application mixture. According to the results, the MSO did not homogenize the distribution of droplets generated by air-induced nozzles in the wheat canopy, as it depended on the crop height evaluated. In addition, the MSO reduced endodrift independently of the type of nozzle used. The
distribution of droplets on the soybean canopy depended on the height and not on the type of nozzle nor the addition of MSO. The MSO and its combination with the nozzle type did not reduce endodrift in this crop.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
Álvarez, I. J. M. (2016). Manejo y uso eficiente del tamaño, uniformidad y distribución de la gota de pulverización en cultivo de soja (Glycine max L. Merrill). [Tesis de Maestría]. Universidad Nacional del Nordeste, Facultad de Ciencias Agrarias, Corrientes, Argentina.
Alves, G. S. y Cunha J. P. A. R. (2014). Field data and prediction models of pesticide spray drift on coffee crop. Pesquisa Agropecuária Brasileira, 49(8), 622-629 https://doi.org/10.1590/S0100-204X2014000800006
Andrade, F. H. (2020). Los desafíos de la agricultura global. Ediciones INTA. http://hdl.handle.net/20.500.12123/9137
Antuniassi, U. R., Camargo, T. V., Bonelli, M. A. P. O. y Romagnole, E. W. C. (20-22 de octubre, 2004). Avaliação da cobertura de folhas de soja em aplicações terrestres com diferentes tipos de pontas. En: III Simpósio Internacional sobre Técnicas de Aplicação de Agrotóxicos. Botucatu, Brasil. Fundação de Estudos e Pesquisas Agrícolas e Florestais.
Appah, S., Jia, W., Ou, M., Wang, P. y Asante, E. A. (2020). Analysis of potential impaction and phytotoxicity of surfactant-plant surface interaction in pesticide application. Crop protection, 127, 104961. https://doi.org/10.1016/j.cropro.2019.104961
Barbosa, R. N., Griffin, J. L., y Hollier, C. A. (2009). Effect of spray rate and method of application in spray deposition. Applied engineering in agriculture, 25(2), 181-184. https://doi.org/10.13031/2013.26327
Boschini, L., Contiero, R. L., Macedo Júnior, E. K. y Guimarães, V. F. (2008). Avaliação da deposição da calda de pulverização em função da vazão e do tipo de bico hidráulico na cultura da soja. Acta Scientiarum. Agronomy, 30(2), 171-175. https://doi.org/10.4025/actasciagron.v30i2.1789
Bretthauer, S. M., Mueller, T. A., Derksen, R. C., Zhu, H. y Bode, L. E. (2008). The effects of spray application rate and droplet size on applications to control soybean rust. American Society of Agricultural and Biological Engineers, 084219. http://dx.doi.org/10.13031/2013.25050
Brun, M., Platz, P., Pagnuco, I. A., Pastore, J. I. y Ballarin, V. (20-22 de septiembre, 2017). Detection and validation of drops generated by agrochemicals application. En XVII Workshop on Information Processing and Control (pp. 1-6). IEEE. http://doi.org/10.23919/RPIC.2017.8214347
Butler-Ellis, M. C., Swan, T., Miller, P. C. H., Waddelow, S., Bradley, A. y Tuck, C. R. (2002). PM—Power and Machinery: Design factors affecting spray characteristics and drift performance of air induction nozzles. Biosystems Engineering, 82(3), 289-296. https://doi.org/10.1006/bioe.2002.0069
Cezar, H. S. (2013). Qualidade da aplicação em trigo conforme reduções da taxa aplicada em associação com diferentes pontas de pulverização. Disertación de Maestría. Universidad Federal de Santa María, Santa María, Brasil.
Cunha, J. P. A. R., Dos Reis, E. F. y de Oliveira Santos, R. (2006). Controle químico da ferrugem asiática da soja em função de ponta de pulverização e de volume de calda. Ciência Rural, 36(5), 1360-1366. https://doi.org/10.1590/S0103-84782006000500003
Cunha, J. P. A. R. D. y Peres, T. C. M. (2010). Influência de pontas de pulverização e adjuvante no controle químico da ferrugem asiática da soja. Acta Scientiarum Agronomy, 32(4), 597-602. https://doi.org/10.4025/actasciagron.v32i4.2502
Cunha, J. P. A. R. D., Teixeira, M. M., Coury, J. R. y Ferreira, L. R. (2003). Avaliação de estratégias para redução da deriva de agrotóxicos em pulverizações hidráulicas. Planta daninha, 2(2), 325-332. https://doi.org/10.1590/S0100-83582003000200019
Charbonnier, G., Nadal, N. y Lafluf, P. (2011). Efecto del tipo de boquilla y el volumen en las aplicaciones para el control de enfermedades en trigo [Tesis de grado]. Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay.
Chechetto, R. G., Gandolfo, M. A., Scacalossi, D., Voltan, D. S., Stefani, V. A. y Domingues, D. B. (2010). Influência da temperatura superficial e umidade do solo em depósitos nas aplicações de agrotóxicos. Revista Científica Eletrônica de Agronomia, 17(2), 40-46. http://www.faef.revista.inf.br/imagens_arquivos/arquivos_destaque/eM3uIBU6NA8fRw7_2013-5-10-16-30-39.pdf
Chechetto, R. G. y Antuniassi, U. (2012). Espectro de gotas gerado por diferentes adjuvantes e pontas de pulverização. Energia na Agricultura, 27(3), 130-142. http://hdl.handle.net/11449/137396
Chen, P., Lan, Y., Huang, X., QI, H., Wang, G., Wang, J., Wang, L. y Xiao, H. (2020). Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy, 10(2), 303. https://doi.org/10.3390/agronomy10020303
Debortoli, M. P. (2011). Efeito dos espectros de gota associados a diferentes arquiteturas de cultivares de soja no controle da ferrugem [Tesis de Doctorado]. Universidad Federal de Santa Maria, Santa Maria, Brasil.
da Silva Camolese, H. y Baio, F. H. R. (2016). Deposição de agrotóxicos pela pulverização noturna em volume de aplicação reduzido na cultura do algodoeiro. Agrarian, 9(34), 365-373. https://ojs.ufgd.edu.br/index.php/agrarian/article/view/4423
Dorr, G. J., Hewitt, A. J., Adkins, S. W., Hanan, J., Zhang, H. y Noller, B. (2013). A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 53, 109e117. https://doi.org/10.1016/j.cropro.2013.06.017
Durão, C. F., y Boller, W. (2017). Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agrícola, 37(4), 709-716. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017
Ellis, M. C. B., Lane, A. G., y O'Sullivan, C. M. (2011). Distribution of spray applied to a cereal crop and the effect of application parameters on penetration. Aspects of Applied Biology, 347-354. https://api.semanticscholar.org/CorpusID:130033432
Enz, J. W., Hofman, V. L. y Thostenson, A. (2017). Air temperature inversions: causes, characteristics and potential effects on pesticide spray drift. Universidad Estatal de Dakota del Norte, Fargo, Estados Unidos. https://www.ndsu.edu/agriculture/sites/default/files/2023-12/AE-1705-%20Air%20Temp%20Inversions2019.pdf
Etiennot, A. y Piazza, A. (2010). Buenas prácticas de aplicación en cultivos planos extensivos. Distancias a zonas urbanas. Criterios y soluciones. Acta Toxicológica Argentina, 18(2) 40-53.
Felsot, A. S., Unsworth, J. B., Linders, J. B. H. J., Roberts, G., Rautman, D., Harris, C. y Carazo, E. (2010). Agrochemical spray drift; assessment and mitigation - A review, Journal of Environmental Science and Health Part B, 46(1), 1-23 https://doi.org/10.1080/03601234.2010.515161
Fehr, W. R., Caviness, C. E., Burmood, D. T. y Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Science, 11(6), 929-931. https://doi.org/10.2135/cropsci1971.0011183X001100060051x
Gaona, L., Bedmar, F., Gianelli, V., Faberi, A. J. y Angelini, H. (2019). Estimating the risk of groundwater contamination and environmental impact of pesticides in an agricultural basin in Argentina. International Journal of Environmental Science and Technology, 16, 6657-6670. https://doi.org/10.1007/s13762-019-02267-w
Gitirana Neto, J. y Cunha, J. P. D. (2016). Spray deposition and chemical control of the coffee leaf-miner with different spray nozzles and auxiliary boom. Engenharia Agricola, 36(4), 656-663. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n4p656-663/2016
Hothorn, T., Bretz, F. y Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346-363. https://doi.org/10.1002/bimj.200810425
Langenbach, T. y Caldas, L. Q. (2018). Strategies for reducing airborne pesticides under tropical conditions. Ambio, 47(5), 574-584. https://doi.org/10.1007%2Fs13280-017-0997-4
Machado, W. A., Silva, S. M., Carvalho, S. M. y Da Cunha, J. P. (2019). Effect of nozzles, application rates, and adjuvants on spray deposition in wheat crops. Engenharia Agrícola, 39, 83-88. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n1p83-88/2019
Martini, A. T., Avila, L. A., Camargo, E. R., Moura, D. S., Marchezan, M. G. y Pivetta, A. P. (2015). Influência de Adjuvantes e Pontas de Pulverização na Deriva de Aplicação do Glyphosate. Planta Daninha, 33(2), 375-386. https://doi.org/10.1590/0100-83582015000200024
Massaro, R. (2008). Aplicación de fitosanitarios con pulverización terrestre en trigo: condiciones operativas y aportes del desarrollo de la maquinaria. INTA EEA Oliveros- Para Mejorar la Producción, 37, 70-75.
Massinon, M. y Lebeau, F. (2012). Comparison of spray retention on synthetic superhydrophobic surface with retention on outdoor grown wheat leaves. International Advances in Pesticide Application: Association of Applied Biologists, 114, 261-268. https://hdl.handle.net/2268/108367
Meng, Y., Lan, Y., Mei, G., Guo, Y., Song, J. y Wang, Z. (2018). Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control. International Journal of Agricultural and Biological Engineering, 11(5), 46-53. https://doi.org/10.25165/j.ijabe.20181105.4298
Nascimento, M. M., da Rocha, G. O. y De Andrade, J. B. (2017). Pesticides in fine airborne particles: from a green analysis method to atmospheric characterization and risk assessment. Scientific Reports, 7, 2267. https://doi.org/10.1038/s41598-017-02518-1
Nascimento, R. S., Ferreira, L. R., Zambolim, L., Parreira, D. F., Oliveira, P. L. D. S. y Moraes, R. G. (2022). Influence of spraying tips on the efficiency of chemical control of soybean rust. Crop Protection, 160, 106031. https://doi.org/10.1016/j.cropro.2022.106031
Nuyttens, D. (2007). Drift from field crop sprayers: The influence of spray application technology determined using indirect and direct drift assessment means. Disertación Doctoral. Universidad Católica de Leuven, Facultad de Ingeniería Biocientífica, Leuven, Bélgica. http://hdl.handle.net/1979/1047
Nuyttens, D., De Schampheleire, M., Verboven, P., Brusselman, E. y Dekeyser, D. (2009). Droplet size and velocity characteristics of agricultural sprays. Transactions of the ASABE, 52(5), 1471-1480. https://doi.org/10.13031/2013.29127
Oerke, E. C. (2006). Crop losses to pests. The Journal of agricultural science, 144(1), 31-43. https://doi.org/10.1017/S0021859605005708
Olivet, J., Picos, C. D., Villalba, J. y Zerbino, S. (2013). Tecnología de aplicación terrestre para el control de insectos en el cultivo de soja. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(4), 450–455. https://doi.org/10.1590/S1415-43662013000400014
Palladini, L. A., Raetano, C. G. y Velini, E. D. (2005). Choice of tracers for the evaluation of spray deposits. Scientia Agricola, 62(5), 440-445. https://doi.org/10.1590/S0103-90162005000500005
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Pergher, G., Gubiani, R. y Tonetto, G. (1997). Foliar deposition and pesticide losses from three air-assisted sprayers in a hedgerow vineyard. Crop protection, 16(1), 25-33. https://doi.org/10.1016/S0261-2194(96)00054-3
Renaudo, C. A., Bertin, D. E. y Bucalá, V. (2022). A coupled atomization-spray drift model as online support tool for boom spray applications. Precision Agriculture, 23(6), 2345-2371. https://doi.org/10.1007/s11119-022-09923-1
Román, R. A. A., Cortez, J. W., Ferreira, M. D. C. y Di Oliveira, J. R. G. (2009). Coverage of soybean crop by spraying liquid due nozzles and spraying volume. Scientia Agraria, 10(3), 223-232.
Rosenbaum, R. K., Anton, A., Bengoa, X., Bjørn, A., Brain, R., Bulle, C., Cosme, N., Dijkman, T., Fantke, P., Felix, M., Geoghegan, T., Gottesbüren, B., Hammer, C., Humbert, S., Jolliet, O., Juraske, R., Lewis, F., Maxime, D., Nemecek, T., … Wallman, M. (2015). The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. The International Journal of Life Cycle Assessment, 20(6), 765-776. https://doi.org/10.1007/s11367-015-0871-1
Russell, V. L., Bolker, B., Buerkner, P, Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Piaskowski, J., Riebl, H. y Singmann, H. (2016). Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.5-1. https://CRAN.R-project.org/package=emmeans
Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer.
Satorre, E. H. y Andrade, F. H. (2021). Cambios Productivos y tecnológicos de la agricultura extensiva argentina en los últimos quince años. CienciaHoy, 29(173), 19-27.
Sinfort, C., Cotteux, E., Bonicelli, B., Ruelle, B., Douchin, M., Berenger, M., Lagrevol, J., Liet, O., y De Rudnicki, V. (13-15 de mayo 2009). Influence des conditions et matériels de pulvérisation sur les pertes de pesticides au sol et dans l'air en viticulture Languedocienne. En XXXIX Congreso del Grupo Francés para el Estudio y Aplicación de Plaguicidas (pp. 1-5).
Souza, R. T. D., Castro, R. D. D. y Palladini, L. A. (2007). Depósito de pulverização com diferentes padrões de gotas em aplicações na cultura do algodoeiro. Engenharia Agrícola, 27, 75-82. https://doi.org/10.1590/S0100-69162007000200011
Souza, R. T. G., Teixeira, I. R., Jesus, F. F. y Reis, E. F. (2017). Spray droplet spectrum and spray deposition in different soybean sowing systems. Australian Journal of Crop Science, 11 (9), 1195-1202. http://dx.doi.org/10.21475/ajcs.17.11.09.pne543
Socorro, J., Durand, A., Temime-Roussel, B., Gligorovski, S., Wortham, H. y Quivet, E. (2016). The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports, 6(1), 1-7. http://doi.org/10.1038/srep33456
Stoletniy Bergalli, I. V. (2013). Tamaño de gota, volumen de aplicación y uso de adyuvantes en la deposición del pulverizado y el control de mancha amarilla causada por Pyrenophora tritici-repentis en trigo. Tesis de Maestría. Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay.
Tepper, G. (2012). Weather essentials for pesticide application. Grains Research & Development Corporation.
Teske, M. E., Thistle, H. W., Hewitt, A. J., Kirk, I. W., Dexter, R. W. y Ghent, J. H. (2005). Rotary atomizer drop size distribution database. Transactions of the ASAE. 48(3), 917−921. http://dx.doi.org/10.13031/2013.18496
Texeira, M. M. (2010). Estudio de la población de gotas de pulverización. En: J. C. Magdalena, J.C., b. Castillo Herrán, A. Di Prinzio, I. Homer Bannister, J. Villalba (Eds.). Tecnología de aplicación de agroquímicos (pp. 67-76). INTA Alto Valle.
Vajs, S., Leskošek, G., Simončič, A. y Lešnik, M. (2008). Comparison of the effectiveness of standard and drift-reducing nozzles for control of some winter wheat diseases. Journal of Plant Diseases and Protection, 115(1), 23-31. http://dx.doi.org/10.1007/BF03356235
Van Den Berg, F. K. R. B., Kubiak, R., Benjey, W. G., Majewski, M. S., Yates, S. R., Reeves, G. L., Smelt, J. H. y Van der Linden, A. M. A. (1999). Emission of pesticides into the air. Water, Air & Soil Pollution, 115, 195–218. http://dx.doi.org/10.1023/A:1005234329622
Vučajnk, F., Trdan, S., Leskošek, G., Košir, I. J., Sreš, A., Ačko, D. K. y Vidrih, M. (2018). Head and leaf fungicide deposit on winter wheat, deoxynivalenol content and yield parameters as affected by different nozzle types. Cereal research communications, 46(2), 321-332. https://doi.org/10.1556/0806.46.2018.13
Wolf, R. E. (diciembre 6-9, 2004). The Affect of Application Volume and Deposition Aids on Droplet Spectrum and Deposition for Aerial Application. En 2004 ASAE NAAA/ASAE Technical Session. Reno, Estados Unidos. https://bae.k-state.edu//faculty/wolf/Papers/NAAA-ASAE-AA04-006.pdf
Yates, S. R., Ashworth, D. J., Zheng, W., Zhang, Q., Knuteson, J. y Van Wessenbeeck, I. J. (2015). Emissions of 1,3-dichloropropene and chloropicrin after soil fumigation under field conditions. Journal of agricultural and food chemistry, 63(22), 5354-5363. http://dx.doi.org/10.1021/acs.jafc.5b01309
Zadoks, J. C, Chang, T. T. y Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Zhu, H., Derksen, R. C., Krause, Charles R., Ozkan, E. H., Brazee, R. D. y Fox, R. D. (2006). Dynamic air velocity and spray deposition inside dense nursery crops with a multi-jet air-assist sprayer. En ASABE Annual International Meeting. (Paper N.º: 061125). Portland, Oregon, Estados Unidos. http://dx.doi.org/10.13031/2013.20628