Debates teóricos contemporáneos en Cognición Numérica
Contenido principal del artículo
Resumen
El procesamiento y manipulación de símbolos numéricos resulta vital para el desempeño diario de los sujetos en la sociedad contemporánea. Es por ello que el desarrollo de competencias matemáticas es un objetivo central de los sistemas educativos a nivel mundial, especialmente en edades tempranas. A pesar del desarrollo en el campo de la cognición numérica, aún no existen respuestas claras sobre cuáles son las representaciones que subyacen a la capacidad de pensar y razonar sobre los números. En el presente artículo, se presenta una revisión bibliográfica de tipo narrativa, con fuentes de información primarias de trabajos fundacionales e investigaciones actuales sobre algunos puntos críticos que generan debate en cuanto a teorías, modelos y mecanismos de funcionamiento del Sistema Numérico Aproximado (SNA) y las evidencias que sustentan cada una de las propuestas.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
La RACC aplicará la licencia internacional de atribuciones comunes creativas (Reconocimiento 4.0 Internacional: https://creativecommons.org/licenses/by/4.0/).
Bajo esta licencia, se permite cualquier explotación de la obra, incluyendo la explotación con fines comerciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin ninguna restricción. Esta licencia es una licencia libre según la Freedom Defined. La única condición es que siempre y en todos los casos se cite a los autores y a la fuente original de publicación (i.e., RACC). Esta licencia fue desarrollada para facilitar el acceso abierto, gratuito y libre a trabajos originales científicos y artísticos.
Cómo citar
Referencias
Agrillo, C., & Beran, M. J. (2013). Number without language: comparative psychology and the evolution of numerical cognition. Frontiers in Psychology, 4, 295. doi: 10.3389/fpsyg.2013.00295
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11, 495–503. doi: 10.1007/s10071-008-0140-9
American Psychiatric Association (APA, 2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, EEUU: American Psychiatric Publishing, Inc.
Aremu, A. O., & Taiwo, A. K. (2014). Reducing mathematics anxiety among students with pseudo-dyscalculia in Ibadan through numerical cognition and emotional freedom techniques: moderating effect of mathematics efficacy. African Journal for the Psychological Study of Social Issues, 17(1), 113-129.
Armstrong, N., Garland, A., & Burns, K. C. (2012). Memory for multiple cache locations and prey quantities in a food-hoarding songbird. Frontiers in Psychology, 3, 584. doi: 10.3389/fpsyg.2012.00584
Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375-388. doi: 10.1016/j.jecp.2012.09.015
Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6), 1131-1136. doi: 10.1037/h0037361
Cantlon, J. F., & Brannon, E. M. (2005). Semantic congruity affects numerical judgments similarly in monkeys and humans. Proceedings of the National Academy of Sciences, 102(45), 16507-16511. doi: 10.1073/pnas.0506463102
Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLOS Biology, 4(5), 0844-0854. doi: 10.1371/journal.pbio.0040125
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. doi: 10.1016/j.actpsy.2014.01.016
Cipora, K., & Wood, G. (2017). Finding the SNARC instead of hunting it: A 20*20 Monte Carlo investigation. Frontiers in Psychology, 8, 1194. doi: 10.3389/fpsyg.2017.01194
Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008), Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132-147. doi: 10.1016/j.pneurobio.2007.11.001
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1–42. doi: 10.1016/0010-0277(92)90049-n
Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47-68. doi: 10.1162/jocn.1996.8.1.47
Dehaene, S. (1997) The Number Sense: How the Mind Creates Mathematics. Oxford, Reino Unido: Oxford University Press.
Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147. doi: 10.1016/S1364-6613(03)00055-x
Dehaene, S., Bossini, S., & Giraux, P. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi: 10.1037/0096-3445.122.3.371
Dehaene, S., & Brannon, E. (2011). Space, time and number in the brain: Searching for the foundations of mathematical thought. Cambridge, EEUU: Academic Press.
Dehaene, S., & Changeux, J. P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407. doi: 10.1162/jocn.1993.5.4.390
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neuroscience, 21(8), 355–361. doi: 10.1016/S0166-2236(98)01263-6
Dehaene, S., Izard, V., & Piazza, M. (2005). Control over non-numerical parameters in numerosity experiments. Unpublished manuscript (disponible en http://www.unicog. org).
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. doi: 10.1080/02643290244000239
DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition, 142, 247-265. doi: 10.1016/j.cognition.2015.05.016
Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74. doi: 10.1080/15248372.2018.1551218
Estévez Pérez, N. (2014). Bases biológicas del procesamiento numérico: evidencias neuropsicológicas y anatómicas desde la Discalculia del Desarrollo. (Tesis doctoral). Centro de Neurociencias de Cuba, Cuba. Recuperado de http://tesis.sld.cu/index.php?P=FullRecord&ID=174&ReturnText=Search+Results&ReturnTo=index.php%3FP%3DAdvancedSearch%26Q%3DY%26F73%3DEst%25C3%25A9vez%2BNancy%26RP%3D5%26SR%3D0%26ST%3DAdvanced
Fechner, G. T. (1890). Elementos de psicofísica. Leipzig, Alemania: Breitkopf & Hartel.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. doi: 10.1016/j.tics.2004.05.002
Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience, 27(33), 8952-8956. doi: 10.1523/JNEUROSCI.2076-07.2007
Fischer, M. H., Riello, M., Giordano, B. L., & Rusconi, E. (2013). Singing numbers. . .in cognitive space–a dual-task study of the link between pitch, space, and numbers. Topics in Cognitive Science,5(2), 354–366. doi: 10.1111/tops.12017
Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. doi: 10.1111/desc.12013
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1-2), 43-74. doi: 10.1016/0010-0277(92)90050-r
Galton, F. (1880). Statistics of mental imagery. Mind, 5(19), 301-318. doi: 10.1093/mind/os-V.19.301
Gebuis, T., Cohen Kadosh, R., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17-35. doi: 10.1016/j.actpsy.2016.09.003
Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4), 642–648. doi: 10.1037/a0026218
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406. doi: 10.1016/j.cognition.2010.02.002
Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Austin, Texas: Pro-Ed.
Göbel, S., Walsh, V., & Rushworth, M. F. S. (2001). The mental number line and the human angular gyrus. NeuroImage, 14(6), 1278–1289. doi: 10.1006/nimg.2001.0927
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496–499. doi: 10.1126/science.1094492
Halberda, J. (2019). Perceptual Input Is Not Conceptual Content. Trends in Cognitive Sciences, 23(8), 636–638. doi: 10.1016/j.tics.2019.05.007
Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the «Number Sense»: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. Developmental Psychology, 44(5), 1457-1465. doi: 10.1037/a0012682
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. doi: 10.1073/pnas.1200196109
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668. doi: 10.1038/nature07246
He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7, 1052. doi: 10.3389/fpsyg.2016.01052
Hubbard, E. M., Diester, I., Cantlon, J. F., Ansari, D., Van Opstal, F., & Troiani, V. (2008). The Evolution of Numerical Cognition: From Number Neurons to Linguistic Quantifiers. Journal of Neuroscience, 28(46), 11819–11824. doi: 10.1523/JNEUROSCI.3808-08.2008
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. doi: 10.1016/j.cognition.2013.12.007
Ifrah, G. (1985). From one to zero: A universal history of numbers. New York, EEUU: Viking.
Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. doi: 10.3758/s13423-011-0154-1
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385. doi: 10.1073/pnas.0812142106
Kanjlia, S., Feigenson, L., & Bedny, M. (2018). Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition, 179, 111-120. doi: 10.1016/j.cognition.2018.06.004
Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685. doi: 10.3389/fpsyg.2015.00685
Kersey, A. J., & Cantlon, J. F. (2017). Neural tuning to numerosity relates to perceptual tuning in 3–6-year-old children. Journal of Neuroscience, 37(3), 512–522. doi: 10.1523/JNEUROSCI.0065-16.2016
Kinzler, K. D., & Spelke, E. S. (2007). Core systems in human cognition. Progress in Brain Research, 164, 257–264. doi: 10.1016/S0079-6123(07)64014-X
Kleinschmidt, A., Büchel, C., Hutton, C., Friston, K. J., & Frackowiak, R. S. J. (2002). The neural structures expressing perceptual hysteresis in visual letter recognition. Neuron, 34(4), 659–666. doi: 10.1016/S0896-6273(02)00694-3
Koleszar, V., de León, D., Díaz-Simón, N., Fitipalde, D., Cervieri, I., & Maiche, A. (2020). Numerical Cognition in Uruguay: from clinics and laboratories to the classroom. Studies in Psychology, 41(2), 294-318. doi: 10.1080/02109395.2020.1749000
Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. doi: 10.1016/j.cognition.2006.10.005
LeFevre, J., DeStefano, D., Coleman, B. & Shanahan, T. (2005). Mathematical cognition and Working Memory. In J. I. D. Campbell (Ed.), Handbook of Mathematical Cognition (pp. 361–377). New York: Psychology Press.
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164. doi: 10.1017/S0140525X16000960
Lõoke, M., Marinelli, L., Eatherington, C. J., Agrillo, C., & Mongillo, P. (2020). Do Domestic Dogs (Canis lupus familiaris) Perceive Numerosity Illusions? Animals, 10(12), 2304. doi: 10.3390/ani10122304
Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18737–18742. doi: 10.1073/pnas.1207212109
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-1237. doi: 10.1111/j.1467-8624.2011.01608.x
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47(2), 379-387. doi: 10.1006/anbe.1994.1052
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781. doi: 10.1111/j.0956-7976.2004.00755.x
Merkley, R., Matejko, A. A., & Ansari, D. (2017). Strong causal claims require strong evidence: A commentary on Wang and colleagues. Journal of Experimental Child Psychology, 153, 163–167. doi: 10.1016/j.jecp.2016.07.008
Nieder, A. (2005). Counting on neurons: the neurobiology of numerical competence. Nature Reviews Neuroscience, 6(3), 177-190. doi: 10.1038/nrn1626
Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex. Science, 297(5587), 1708-1711. doi: 10.1126/science.1072493
Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149-157. doi: 10.1016/S0896-6273(02)01144-3
Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line –A review of multi-digit number processing. Zeitschrift für Psychologie. 219(1), 3–22. doi: 10.1027/2151-2604/a000041
Odic, D. (2017). The contributions of non-numeric dimensions to number encoding, representations, and decision-making factors. Behavioral and Brain Sciences, 40, e182. doi: 10.1017/S0140525X1600220X
Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology. General, 143(1), 255–265. doi: 10.1037/a0030825
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental Change in the Acuity of Approximate Number and Area Representations. Developmental Psychology, 49(6), 1103–1112. doi: 10.1037/a0029472
Pahl, M., Si, A., & Zhang, S. (2013). Numerical cognition in bees and other insects. Frontiers in Psychology, 4, 162. doi: 10.3389/fpsyg.2013.00162
Piazza, M. (2010). Neurocognitive Start-Up Tools for Symbolic Number Representations. Trends in Cognitive Sciences, 14(12), 542-551. doi: 10.1016/j.tics.2010.09.008
Piazza, M., De Feo, V., Panzeri, S., & Dehaene, S. (2018). Learning to focus on number. Cognition, 181, 35–45. doi: 10.1016/j.cognition.2018.07.011
Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. doi: 10.1016/j.neuron.2004.10.014
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6), 1037-1043. doi: 10.1177/0956797612464057
Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293–305. doi: 10.1016/j.neuron.2006.11.022
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499–503. doi: 10.1126/science.1102085
Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of Functional MRI Data Analysis. Cambridge, Reino Unido: Cambridge University Press.
Purpura, D. J., & Reid, E. E. (2016). Mathematics and language: Individual and group differences in mathematical language skills in young children. Early Childhood Research Quarterly, 36, 259-268. doi: 10.1016/j.ecresq.2015.12.020
Purpura, D. J., & Simms, V. (2018). Approximate number system development in preschool:What factors predict change? Cognitive Development, 45, 31-39. doi: 10.1016/j.cogdev.2017.11.001
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2451–2460. doi: 10.1098/rspb.2009.0044
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534-536. doi: 10.1126/science.aaa1379
Sawamura, H., Shima, K., & Tanji, J. (2002) Numerical representation for action in the parietal cortex of the monkey. Nature, 415(6874), 918–922. doi: 10.1038/415918a
Sella, F., Hartwright, C., & Cohen Kadosh, R. (2018). The Neurocognitive Bases of Numerical Cognition. In J. T. Wixted & S. L. Thompson-Schill (Eds.), Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience. Volume 3: Language and Thought (pp. 1–47). New York: Wiley. doi: 10.1002/9781119170174.epcn316
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. doi: 10.1111/j.1467-8624.2004.00684.x
Spelke, E. S. (2000). Core knowledge. American Psychologist, 55(11), 1233–1243. doi: 10.1037/0003-066X.55.11.1233
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96. doi: 10.1111/j.1467-7687.2007.00569.x
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116–18120. doi: 10.1073/pnas.1302751110
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662. doi: 10.1037/h0054651
Tibber, M. S., Manasseh, G. S., Clarke, R. C., Gagin, G., Swanbeck, S. N., Butterworth, B., …Dakin, S. C. (2013). Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability. Vision Research, 89, 1–9. doi: 10.1016/j.visres.2013.06.006
Tomlinson, R. C., DeWind, N. K., & Brannon, E. M. (2020). Number sense biases children’s area judgments. Cognition, 204, 104352. doi: 10.1016/j.cognition.2020.104352
U.S. Department of Education & What Works Clearinghouse (2017). What Works Clearinghouse: Procedures and Standards Handbook (Version 4.0). Recuperado de https://ies.ed.gov/ncee/wwc/handbooks
Vanbinst, K., Ansari, D., Ghesquière, P., & De Smedt, B. (2016). Symbolic numerical magnitude processing is as important to arithmetic as phonological awareness is to reading. PLoS ONE, 11(3), e0151045. doi: 10.1371/journal.pone.0151045
Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504. doi: 10.1162/0898929042568497
Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the SNARC effect: An individual differences approach. PLoS ONE, 9(4), e95756. doi: 10.1371/journal.pone.0095756
Wang, J., Halberda, J., & Feigenson, L. (2017). Approximate number sense correlates with math performance in gifted adolescents. Acta Psychologica, 176, 78–84. doi: 10.1016/j.actpsy.2017.03.014
Wang, J., Halberda, J., & Feigenson, L. (2020). Emergence of the link between the Approximate Number System and symbolic math ability. Child Development, 92(2), e186-e200. doi: 10.1111/cdev.13454
Wang, J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147, 82–99. doi: 10.1016/j.jecp.2016.03.002
Xenidou‐Dervou, I., Van Luit, J. E. H., Kroesbergen, E. H., Friso‐van den Bos, I., Jonkman, L. M., van der Schoot, M., & Van Lieshout, E. C. D. M. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), e12671. doi: 10.1111/desc.12671
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. doi: 10.1016/S0010-0277(99)00066-9
Yaman, S., Kilian, A., von Fersen, L., & Güntürkün, O. (2012). Evidence for a numerosity category that is based on abstract qualities of “few” vs. “many” in the bottlenose dolphin (Tursiops truncatus). Frontiers in Psychology, 3, 473. doi: 10.3389/fpsyg.2012.00473