Desarrollo conceptual a través de simulaciones computacionales: un estudio de caso en física

Autores/as

  • Juan José Velasco Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre. Ciudad Universitaria, CP 5000, Córdoba, Argentina.
  • Laura Buteler Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre. Ciudad Universitaria, CP 5000, Córdoba, Argentina.
  • Enrique Andrés Coleoni Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre. Ciudad Universitaria, CP 5000, Córdoba, Argentina.

DOI:

https://doi.org/10.55767/2451.6007.v33.n2.35308

Palabras clave:

Simulaciones computacionales, Cambio conceptual, Teoría de clases de coordinación, Termodinámica

Resumen

Este trabajo indaga cómo los estudiantes se involucran con una simulación, durante la resolución de un problema, y aprenden. Es un
estudio de caso con tres grupos de estudiantes universitarios que resuelven un problema de termodinámica (ciclo de Carnot) asistidos
por una simulación computacional específicamente diseñada para esa circunstancia. Se utiliza la Teoría de Clases de Coordinación para
interpretar los resultados. Estos revelan que existen tres tipos distintos de interacción entre los estudiantes y la simulación que promueven el desarrollo conceptual de los grupos participantes.

Referencias

Adams, W. K., Reid, S., LeMaster, R., McKagan, S., Perkins, K., Dubson, M., & Wieman, C. E. (2008). A study of educational simulations Part II–Interface Design. Journal of Interactive Learning Research, 19(4), 551-577.

Buteler, L., & Coleoni, E. (2016). Solving problems to learn concepts, how does it happen? A case for buoyancy. Physical

Review Physics Education Research, 12(2), 020144.

diSessa, A. A. (2002). Why “conceptual ecology” is a good idea. In M. Limon, & L. Mason (Eds.). Reconsidering conceptual change: Issues in theory and practice (28-60). Dordrecht, the Netherlands: Springer Netherlands.

diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International journal of science education,

20(10), 1155-1191.

diSessa, A. A., Sherin, B., & Levin, M. (2016). Knowledge analysis: An introduction. In A. diSessa, M. Levin, & N. Brown

(Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences, (30-71).

diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. Transfer of learning from a modern

multi-disciplinary perspective, 121-154.

Halldén, O., Haglund, L., & Strömdahl, H. (2007). Conceptions and contexts: On the interpretation of interview and

observational data. Educational Psychologist, 42(1), 25-40.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The journal of the learning sciences,

4(1), 39-103.

Kluge, A. (2019). Learning science with an interactive simulator: negotiating the practice-theory barrier. International

Journal of Science Education, 41(8), 1071-1095.

Krajcik, J. S., & Mun, K. (2014). Promises and challenges of using learning technologies to promote student learning of

science. Handbook of research on science education, 2, 337-360.

Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14(3), 257-274

Martinez, G., Naranjo, F. L., Perez, A. L., Suero, M. I., & Pardo, P. J. (2011). Comparative study of the effectiveness of

three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory. Physical Review Special Topics-Physics Education Research, 7(2), 020111.

Ronen, M., & Eliahu, M. (2000). Simulation—A bridge between theory and reality: The case of electric circuits. Journal

of computer assisted learning, 16(1), 14-26.

Parnafes, O. (2007). What does “fast” mean? Understanding the physical world through computational representations. The Journal of the Learning Sciences, 16(3), 415-450.

Sengupta, P., Krinks, K.D., Clark, D.B. (2015). Learning to Deflect: Conceptual Change in Physics during Digital Game

Play. Journal of the Learning Sciences, 24(4), 638-674.

Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review

of the literature. International Journal of Science Education, 34(9), 1337-1370.

Velasco, J., & Buteler, L. (2017). Simulaciones computacionales en la enseñanza de la física: una revisión crítica de los

últimos años. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 35(2), 161-178.

Descargas

Publicado

2021-11-05

Número

Sección

Investigación en Enseñanza de la Física

Cómo citar

Desarrollo conceptual a través de simulaciones computacionales: un estudio de caso en física. (2021). Revista De Enseñanza De La Física, 33(2), 529-536. https://doi.org/10.55767/2451.6007.v33.n2.35308