Influencia del paso del tiempo en las herramientas digitales educativas: obsolescencia percibida
DOI:
https://doi.org/10.60020/1853-6530.v13.n25.37701Palabras clave:
aprendizaje virtual, experiencia del usuario, tecnologías educativas, realidad virtualResumen
Las tecnologías educativas están sometidas a un rápido proceso de obsolescencia y, aunque a nivel didáctico pudieran seguir siendo igual de eficaces que como lo fueron desde el día de su creación, a nivel de motivación pueden generar un rechazo por parte del alumnado al encontrarlas obsoletas. Este artículo presenta cómo la experiencia del usuario (user experience, UX) en una plataforma virtual interactiva (PVI) basada en la realidad virtual puede afectar al proceso de enseñanza-aprendizaje para el que inicialmente fue diseñada. Los resultados revelan un decaimiento progresivo en la valoración del alumnado tanto en el grado de motivación como en la valoración de la interactividad con la PVI, es decir, evidencian un claro proceso de obsolescencia. Además, este artículo demuestra cómo la actualización de esta PVI con un diseño actual favorece la UX recuperando en los estudiantes el nivel alcanzado antes de iniciarse el proceso de obsolescencia.
Referencias
AGUIRRE, A.F.; VILLAREAL, Á.P.; COLLAZOS, C.A. y GIL, R. (2015). Aspectos a considerar en la evaluación de la satisfacción de uso en Entornos Virtuales de Aprendizaje. Revista Colombiana de Computación, 6, pp. 75–96.
ANDREATTA-DA-COSTA, L.; URBANO, D. y RESTIVO, T. (2017). Haptic interaction with virtual interface to learn strength of materials. En Proceedings of 2017 IEEE Global Engineering Education Conference (EDUCON2017), pp. 1498–1501. New York, NY, USA: IEEE.
CALLISTER, W.D. (2007). Materials science and engineering: An introduction (7th ed.). New York, NY, USA: John Wiley & Sons.
CANTABELLA, M.; LÓPEZ-AYUSO, B.; MUÑOZ, A. y CABALLERO, A. (2015). Una herramienta para el seguimiento del profesorado universitario en entornos virtuales de aprendizaje. Revista Española de Documentación Científica, 39(4), e153.
CHATURVEDI, S.K.; YOON, J.; MCKENZIE, R.; KATSIOLOUDIS, P.J.; GARCIA, H.M. y REN, S. (2012). AC 2012-3412: Implementation and assessment of a virtual reality- experiment in the undergraduate thermo-fluids laboratory. En 2012 ASEE -Annual Conference. Washington, DC, USA: American Society for Engineering Education.
CÓRDOBA-CELY, C. (2013). La experiencia de usuario: de la utilidad al afecto. Iconofacto, 9(12), pp. 56-70.
CRUZ, D.R. y MENDOZA, D.M.M. (2018). Design and development of virtual laboratory: a solution to the problem of laboratory setup and management of pneumatic courses in Bulacan State University College of Engineering. En 2018 IEEE Games, Entertainment, Media Conference
(GEM 2018), pp. 20–23. New York, NY, USA: IEEE.
DÍAZ, E.L. y VALDERRAMA, C.F. (2018). Evaluación de la usabilidad de los EVA (entornos virtuales de aprendizaje) a partir de la experiencia de usuarios aplicando lógica difusa. Revista Vínculos: Ciencia, Tecnología y Sociedad, 15(2), pp. 56-65.
DÍAZ-LÓPEZ, L., TARANGO, J. y REFUGIO, J. (2020). Realidad virtual en procesos de aprendizaje en estudiantes universitarios e interés para despertar vocaciones científicas. Cuadernos de Documentación Multimedia, 31, e68958.
DUNN, T.J. y KENNEDY, M. (2019). Technology enhanced learning in higher education; motivations, engagement and academic achievement. Computers and Education, 137, pp. 104–113.
EXTREMERA, J.; VERGARA, D.; DÁVILA, L.P. y RUBIO, M.P. (2020a). Virtual and Augmented Reality Environments to Learn the Fundamentals of Crystallography. Crystals, 10(6), p. 456.
EXTREMERA, J.; VERGARA, D.; GÓMEZ, A.I.; FERNÁNDEZ, P.; ORDOÑEZ, E. y RUBIO, M.P. (2020b). Impediments to the development of immersive virtual reality in education. En Proceedings of EDULEARN20 Conference, pp. 1282-1288.
FERNÁNDEZ-AVILÉS, D.; DOTOR, D.; CONTRERAS, D. y SALAZAR, J.C. (2016). Virtual labs: A new tool in the education. En Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 271–272. New York, NY, USA: IEEE.
FOGARTY, J.; MCCORMICK, J. y EL-TAWIL, S. (2018). Improving student understanding of complex spatial arrangements with virtual reality. Journal of Professional Issues in Engineering Education and Practice, 144(2).
HODGSON, P.; LEE, V.W.Y.; CHAN, J.C.S.; FONG, A.; TANG, C.S.Y.; CHAN, L. y WONG, C. (2019). Immersive virtual reality (IVR) in higher education: Development and implementation. En M. Dieck y T. Jung (Eds.), Augmented Reality and Virtual Reality: The Power of AR and VR for Business, pp. 161–173. Cham, Switzerland: Springer International Publishing.
KALMAN, C. y EUGENIO, E.G. (2015). Successful language learning in a corporate setting: The role of attribution theory and its relation to intrinsic and extrinsic motivation. Studies in Second Language Learning and Teaching, 5(4), 583–608.
LAU, K. W.; KAN, C.W. y LEE, P.Y. (2017). Doing textiles experiments in game-based virtual reality. A design of the stereoscopic chemical laboratory (SCL) for textiles education. International Journal of Information and Learning Technology, 34(3), pp. 242–258.
LEI, Z.; ZHOU, H.; HU, W.; DENG, Q.; ZHOU, D. y LIU, Z.W. (2018). HTML5-based 3-D online control laboratory with virtual interactive wiring practice. IEEE Transactions on Industrial Informatics, 14(6), pp. 2473–2483.
LOU, X.; ZHANG, Q.; WU, B.; ZHOU, C.Q. y HEIM, J. E. (2012). Development of a virtual power plant boiler for training. En Proceedings of the ASME Summer Heat Transfer Conference 2012, 1, pp. 1085–1091. New York, NY, USA: American Society of Mechanical Engineers.
MELLAL, M.A. (2020). Obsolescence – A review of the literature. Technology in Society, 63, 101347.
MIRAUDA, D., CAPECE, N. y ERRA, U. (2019). StreamflowVL: A virtual fieldwork laboratory that supports traditional hydraulics engineering learning. Applied Sciences, 9, 4972.
MOHAMMAD-DAVOUDI, A.H. y PARPOUCHI, A. (2016). Relation between team motivation, enjoyment, and cooperation and learning results in learning area based on team-based learning among students of Tehran University of medical science. En B. McKenna, F. S. Ardabili y N. Faghih (Eds.), 3rd International Conference on New Challenges in Management and Business: Organization and Leadership, 230 (pp. 184–189).
Amsterdam, Netherlands: Elsevier Science
MOR, M., GARRETA, M. y GALOFRÉY, M. (2007). Diseño centrado en el usuario en entornos virtuales de aprendizaje, de la usabilidad a la experiencia del estudiante. Actas del IV Simposio Pluridisciplinar sobre Diseño, Evaluación y Desarrollo de Contenidos Educativos Reutilizables (SPDECE´07).
MORELAND, J.; DUBEC, S.; OKOSUN, T.; WANG, X. y ZHOU, C. (2014). A 3D wind turbine simulator for aerodynamics education. En Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2013, 5, p. V005T05A023. New York, NY, USA: American Society of Mechanical Engineers.
OKAMOTO, M.; ISHIMURA, T. y MATSUBARA, Y. (2017). AR-based inorganic chemistry learning support system using mobile HMD. En W. Chen, J. C. Yang, A. F. M. Ayub, S. L. Wong y A. Mitrovic (Eds.), Proceedings of the 25th International Conference on Computers in Education (ICCE 2017), pp. 511–513. Taoyuan City, Taiwan: Asia-Pacific Society for Computers in Education.
OUDEYER, P.Y., GOTTLIEB, J. y LOPES, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. En B. Studer y S. Knecht (Eds.), Motivation: Theory, Neurobiology and Applications 229, pp. 257–284. Amsterdam, Netherlands: Elsevier Science.
RAMÍREZ-ROMERO, J.M. y RIVERA-RODRÍGUEZ, S. (2018). Characteristics and functions of a virtual laboratory of induction machines in the teaching environment. Revista Iberoamericana de Tecnologías Del Aprendizaje, 13(4), pp. 130–135.
REN, S., MCKENZIE, F.D., CHATURVEDI, S.K., PRABHAKARAN, R., YOON, J., KATSIOLOUDIS, P.J. y GARCIA, H. (2015). Design and comparison of immersive interactive learning and instructional techniques for 3D virtual laboratories. Presence: Teleoperators and Virtual Environments, 24(2), pp. 93–112.
SAMPAIO, A.Z. y VIANA, L. (2014). Virtual reality technology used as a learning tool in civil engineering training. En Proceedings of 2014 7th International Conference on Human System Interactions (HSI), pp. 156–161. New York, NY, USA: IEEE.
SHARPLES, S., COBB, S., MOODY, A. y WILSON, J.R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), pp. 58–69.
TOBAR, K. (2015). Copy or discard: primeros acercamientos en torno a la originalidad y obsolescencia programada en el net.art. En 2nd Art, Science, City International Conference ASC2015, pp. 185-189. Valencia, España: UPV.
VERGARA, D. (2019). Imposición de los laboratorios virtuales en la educación del siglo XXI. Eduweb, 13(2), pp. 119-128.
VERGARA, D.; EXTREMERA, J.; RUBIO, M.P. y DÁVILA, L.P. (2019). Meaningful learning through virtual reality learning environments: a case study in materials engineering. Applied Sciences, 9, 4625.
VERGARA, D.; EXTREMERA, J.; RUBIO, M.P. y DÁVILA, L.P. (2020). The technological obsolescence of virtual reality learning environments. Applied Sciences, 10, 915.
VERGARA, D., LORENZO, M. y RUBIO, M.P. (2015). Virtual environments in materials science and engineering: The students’ opinion. En H. Lim (Ed.) Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education (1st ed.), pp. 148–165. Hershey, PA, USA: IGI Global.
VERGARA, D.; LORENZO, M. y RUBIO, M.P. (2016). On the use of virtual environments in engineering education. International Journal of Quality Assurance in Engineering and Technology Education, 5(2), pp. 30–41.
VERGARA, D.; RODRÍGUEZ-MARTÍN, M.; RUBIO, M.P.; FERRER-MARÍN, J.; NÚÑEZ-GARCÍA, F.J. y MORALEJO-COBO, L. (2018). Technical staff training in ultrasonic non-destructive testing using virtual reality. Dyna, 93(2), pp. 150–154.
VERGARA, D. y RUBIO, M.P. (2012). Active methodologies through interdisciplinary teaching links: Industrial radiography and technical drawing. Journal of Materials Education, 34(5–6), pp. 175–185.
VERGARA, D.; RUBIO, M.P. y LORENZO, M. (2014). New virtual application for improving the students’ understanding of ternary phase diagrams. Key Engineering Materials, 572(1), pp. 578–581.
VERGARA, D.; RUBIO, M.P. y LORENZO, M. (2015). A virtual environment for enhancing the understanding of ternary phase diagrams. Journal of Materials Education, 37(3–4), pp. 93–101.
VERGARA, D.; RUBIO, M.P. y LORENZO, M. (2017). On the design of virtual reality learning environments in engineering. Multimodal Technologies and Interaction, 1(2), p. 11.
VERGARA, D.; RUBIO, M.P. y LORENZO, M. (2018). A virtual resource for enhancing the spatial comprehension of crystal lattices. Education Sciences, 8(4), p. 153.
VERGARA, D.; RUBIO, M.P. y LORENZO, M. (2019). On the use of PDF-3D to overcome spatial visualization difficulties linked with ternary phase diagrams. Education Sciences, 9(2), p. 67.
VERGARA, D.; RUBIO, M.P.; LORENZO, M. y RODRÍGUEZ, S. (2020). On the importance of the design of virtual reality learning environments. En: Gennari R. et al. (eds) Methodologies and Intelligent Systems for Technology Enhanced Learning, 9th International Conference. MIS4TEL 2019. Advances in Intelligent Systems and Computing, 1007. Springer, Cham.
YAN, X.; BALLU, A.; BLANCHARD, A.; MOUTON, S. y NIANDOU, H. (2017). Development of virtual metrology laboratory based on skin model shape simulation. Lecture Notes in Mechanical Engineering, pp. 1023–1032.
YANG, Y.M.; ZHANG, R.L. y SUN, L.L. (2016). Study on modeling and simulation of the electronic virtual laboratory. En International Conference on Artificial Intelligence and Computer Science (AICS 2016), pp. 199–204. Lancaster, PA, USA: Destech Publications.
YOU, F.; TAN, Y., FENG, J.; LI, L.; LIN, J. y LIU, X. (2016). Research on virtual training system in aerospace based on interactive environment. En A. ElRhalibi, F. Tian, Z. Pan y B. Liu (Eds.), E-Learning and Games, 9654, pp. 50–62. Cham, Switzerland: Springer International Publishing.
ZHANG, X.; LIU, J.; CHEN, Q.; SONG, H.; ZHAN, Q. y LU, J. (2018). A 3D virtual weft-knitting engineering learning system based on Unreal Engine 4. Computer Applications in Engineering Education, 26(6), pp. 2223–2236.
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Se permite la generación de obras derivadas siempre que no se haga con fines comerciales. Tampoco se puede utilizar la obra original con fines comerciales.