LA INSERCIÓN DE TECNOLOGÍA DE INTELIGENCIA ARTIFICIAL EN LA ADMINISTRACIÓN PÚBLICA Una revisión integrativa de la literatura

Contenido principal del artículo

Angela Luci Barbosa Serra
Hilka Pelizza Vier Machado

Resumen

Esta revisión integradora de la literatura tiene como objetivo analizar el estado actual de la investigación sobre el uso de la inteligencia artificial (IA) en el sector público, destacando la importancia de una gobernanza adecuada y consideraciones éticas para su implementación.  Se adoptó un enfoque bibliométrico, analizando 251 artículos disponibles en la Web of Science. Entre estos, se seleccionaron 41 artículos para una revisión más detallada. Luego de un análisis bibliométrico preliminar, se procedió a la lectura de los artículos elegidos, seguido de la codificación y categorización del material. El estudio enfatiza la necesidad de sistematizar los avances de la IA en el sector público, abarcando sus aplicaciones y resultados, destacando también la importancia de una gobernanza adecuada y ética para su implementación. Al examinar los artículos, se prestó cada vez más atención a la gobernanza de la IA en la administración pública, considerando los riesgos y desafíos asociados con su implementación. El estudio reconoce la importancia de las estrategias y tecnologías emergentes para la gestión pública, destacando el potencial transformador de las tecnologías digitales. Sin embargo, señala la escasez de investigaciones sobre IA en el sector público y la necesidad emergente de sistematizar sus avances y resultados.

Detalles del artículo

Cómo citar
LA INSERCIÓN DE TECNOLOGÍA DE INTELIGENCIA ARTIFICIAL EN LA ADMINISTRACIÓN PÚBLICA: Una revisión integrativa de la literatura. (2024). Administración Pública Y Sociedad (APyS), 17, 92-124. https://doi.org/10.71047/2524.9568.n17.44467
Sección
Dossier Temático

Cómo citar

LA INSERCIÓN DE TECNOLOGÍA DE INTELIGENCIA ARTIFICIAL EN LA ADMINISTRACIÓN PÚBLICA: Una revisión integrativa de la literatura. (2024). Administración Pública Y Sociedad (APyS), 17, 92-124. https://doi.org/10.71047/2524.9568.n17.44467

Referencias

AGARWAL, Pankaj K. (2018). Public administration challenges in the world of AI and bots. Public Administration Review, 78(6), 917-921.

ANDROUTSOPOULOU, Aggeliki, et al. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36(2), 358-367.

AOKI, Naomi. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490.

ASATIANI, Aleksandre, et al. (2021). Sociotechnical envelopment of artificial intelligence: An approach to organizational deployment of inscrutable artificial intelligence systems. Journal of the Association for Information Systems (JAIS), 22(2), 325-252.

BALANCIERI, Renato, et al. (2005). A análise de redes de colaboração científica sob as novas tecnologias de informação e comunicação: um estudo na Plataforma Lattes. Ciência da informação, 34, 64-77.

BANNISTER, Frank, & CONNOLLY, Regina. (2020). Administration by algorithm: A risk management framework. Information Polity, 25(4), 471-490.

BARTH, Thomas J., & ARNOLD, Eddy. (1999). Artificial intelligence and administrative discretion: Implications for public administration. The American Review of Public Administration, 29(4), 332-351.

BIESBROEK, Robbert, BADLOE, Shashi, & ATHANASIADIS, Ioannis N. (2020). Machine learning for research on climate change adaptation policy integration: an exploratory UK case study. Regional Environmental Change, 20(3), 85.

BÖRNER, Katy, CHEN, Chaomei, & BOYACK, Kevin W. (2003). Visualizing knowledge domains. Annual review of information science and technology, 37(1), 179-255.

BORNMANN, Lutz, et al. (2008). Citation counts for research evaluation: standards of good practice for analyzing bibliometric data and presenting and interpreting results. Ethics in science and environmental politics, 8(1), 93-102.

BULLOCK, Justin B. (2019). Artificial intelligence, discretion, and bureaucracy. The American Review of Public Administration, 49(7), 751-761.

BULLOCK, Justin, YOUNG, Matthew M., & WANG, Yi-Fan. (2020). Artificial intelligence, bureaucratic form, and discretion in public service. Information Polity, 25(4), 491-506.

BUSE SEVINC CUBUK, Ecem, KARKIN, Naci, & YAVUZ, Nilay. (2019). Public sector innovativeness and public values through information and communication technologies. In: Proceedings of the 20th Annual International Conference on Digital Government Research, 353-361.

BUSUIOC, Madalina. (2021). Accountable artificial intelligence: Holding algorithms to account. Public Administration Review, 81(5), 825-836.

BUTCHER, James, & BERIDZE, Irakli. (2019). What is the state of artificial intelligence governance globally? The RUSI Journal, 164(5-6), 88-96.

CAMPION, Averill, et al. (2020). Managing artificial intelligence deployment in the public sector. Computer, 53(10), 28-37.

CARVALHO, André CARLOS Ponce de Leon, et al. (2021). Inteligência Artificial: riscos, benefícios e uso responsável. Estudos Avançados, 35, 21-36.

CASTRO, C. M. (2006). A prática da pesquisa. 2. ed. São Paulo: Pearson Prentice Hall.

CHATTERJEE, Sheshadri, KHORANA, Sangeeta, & KIZGIN, Hatice. (2022). Harnessing the potential of artificial intelligence to foster citizens’ satisfaction: An empirical study on India. Government information quarterly, 39(4), 101621.

CHEN, Xiaotian. (2010). The declining value of subscription-based abstracting and indexing services in the new knowledge dissemination era. Serials Review, 36(2), 79-85.

COSMAN, Fabio G., PLONSKI, Guilherme Ary, & NERI, Hugo. (2021). Inteligência artificial: avanços e tendências. São Paulo: Instituto de Estudos Avançados.

CRIADO, J. Ignacio, & GIL-GARCIA, J. Ramon. (2019). Creating public value through smart technologies and strategies: From digital services to artificial intelligence and beyond. International Journal of Public Sector Management.

DI VAIO, Assunta, HASSAN, Rohail, & ALAVOINE, Claude. (2022). Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technological Forecasting and Social Change, 174, 121201.

DWIVEDI, Yogesh K. et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, v. 57, p. 101994, 2021.

ENSSLIN, Leonardo et al. ProKnow-C, knowledge development process-constructivist. Processo técnico com patente de registro pendente junto ao INPI. Brasil, v. 10, n. 4, p. 2015, 2010.

ENSSLIN, Leonardo; ENSSLIN, Sandra Rolim; PINTO, Hugo de Moraes. Processo de investigação e Análise bibliométrica: Avaliação da Qualidade dos Serviços Bancários. Revista de administração contemporânea, v. 17, p. 325-349, 2013.

FATIMA, Samar; DESOUZA, Kevin C.; DAWSON, Gregory S. National strategic artificial intelligence plans: A multi-dimensional analysis. Economic Analysis and Policy, v. 67, p. 178-194, 2020.

GARCIA, Débora Cristina Ferreira; GATTAZ, Cristiane Chaves; GATTAZ, Nilce Chaves. A Relevância do Título, do Resumo e de Palavras-chave para a Escrita de Artigos Científicos. Revista de Administração Contemporânea, v. 23, p. 1-9, 2019.

GESK, Tanja Sophie; LEYER, Michael. Artificial intelligence in public services: When and why citizens accept its usage. Government Information Quarterly, v. 39, n. 3, p. 101704, 2022.

GONÇALVES, Aline Lima. Uso de resumos e palavras-chave em Ciências Sociais: uma avaliação. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, v. 13, n. 26, 2008.

GUEDES, Vânia LS; BORSCHIVER, Suzana. Bibliometria: uma ferramenta estatística para a gestão da informação e do conhecimento, em sistemas de informação, de comunicação e de avaliação científica e tecnológica. Encontro Nacional de Ciência da Informação, v. 6, n. 1, p. 18, 2005.

HE, Yuejun et al. Mining and representing the concept space of existing ideas for directed ideation. Journal of Mechanical Design, v. 141, n. 12, 2019.

HENMAN, Paul. Improving public services using artificial intelligence: possibilities, pitfalls, governance. Asia Pacific Journal of Public Administration, v. 42, n. 4, p. 209-221, 2020.

JOBIN, Anna; IENCA, Marcello; VAYENA, Effy. The global landscape of AI ethics guidelines. Nature Machine Intelligence, v. 1, n. 9, p. 389-399, 2019.

KAHRAMAN, Cengiz et al. Information systems outsourcing decisions using a group decision-making approach. Engineering Applications of artificial intelligence, v. 22, n. 6, p. 832-841, 2009.

KANKANAMGE, Nayomi; YIGITCANLAR, Tan; GOONETILLEKE, Ashantha. Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, v. 65, p. 101729, 2021.

KANKANHALLI, Atreyi; CHARALABIDIS, Yannis; MELLOULI, Sehl. IoT and AI for smart government: A research agenda. Government Information Quarterly, v. 36, n. 2, p. 304-309, 2019.

KUZIEMSKI, Maciej; MISURACA, Gianluca. AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications policy, v. 44, n. 6, p. 101976, 2020.

LACERDA, Rogério Tadeu de Oliveira; ENSSLIN, Leonardo; ENSSLIN, Sandra Rolim. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, v. 19, p. 59-78, 2012.

LEE, Hee ‘Andy’; LAW, Rob; LADKIN, Adele. What makes an article citable?. Current Issues in Tourism, v. 17, n. 5, p. 455-462, 2014.

MADAN, Rohit; ASHOK, Mona. AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Government Information Quarterly, p. 101774, 2022.

MADAN, Rohit; ASHOK, Mona. A public values perspective on the application of Artificial Intelligence in government practices: A Synthesis of case studies. In: Handbook of Research on Artificial Intelligence in Government Practices and processes. IGI Global, 2022. p. 162-189.

MALTRÁS BARBA, Bruno. Los indicadores bibliométricos: fundamentos y aplicación al análisis de la ciencia. Ediciones Trea, 2003.

MCDONALD III, Bruce D. et al. The future of public administration research: An editor's perspective. Public Administration, v. 100, n. 1, p. 59-71, 2022.

MEDAGLIA, Rony; GIL-GARCIA, J. Ramon; PARDO, Theresa A. Artificial intelligence in government: taking stock and moving forward. Social Science Computer Review, p. 08944393211034087, 2021.

MEHR, Hila; ASH, H.; FELLOW, D. Artificial intelligence for citizen services and government. Ash Cent. Democr. Gov. Innov. Harvard Kennedy Sch., no. August, p. 1-12, 2017.

MEIJER, Albert. E-governance innovation: Barriers and strategies. Government Information Quarterly, v. 32, n. 2, p. 198-206, 2015.

MIKHAYLOV, Slava Jankin; ESTEVE, Marc; CAMPION, Averill. Artificial intelligence for the public sector: opportunities and challenges of cross-sector collaboration. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences, v. 376, n. 2128, p. 20170357, 2018.

MISURACA, Gianluca; VISCUSI, Gianluigi. Shaping public sector innovation theory: an interpretative framework for ICT-enabled governance innovation. Electronic Commerce Research, v. 15, n. 3, p. 303-322, 2015.

MOHAMED, Azlinah et al. The state of the art and taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, v. 53, p. 989-1037, 2020.

MOHAMED, Alsayed Abdelwahed; EL-BENDARY, Nashwa; ABDO, A. Law Architecture for Regulatory-Compliant Public Enterprise Model: A Focus on Healthcare Reform in Egypt. International Journal of Advanced Computer Science and Applications (IJACSA), v. 12, n. 6, p. 6, 2021.

MUÑOZ, Xaime Rodríguez-Arana. Direito fundamental à boa Administração Pública. EditoraFórum, 2012.

NILI, Alireza; DESOUZA, Kevin C.; YIGITCANLAR, Tan. What can the public sector teach us about deploying artificial intelligence technologies?. IEEE Software, 2022.

OJO, Adegboyega; MELLOULI, Sehl; AHMADI ZELETI, Fatemeh. A realist perspective on AI-era public management. In: Proceedings of the 20th Annual International Conference on Digital Government Research. 2019. p. 159-170.

PENCHEVA, Irina; ESTEVE, Marc; MIKHAYLOV, Slava Jankin. Big Data and AI–A transformational shift for government: So, what next for research?. Public Policy and Administration, v. 35, n. 1, p. 24-44, 2020.

POLLITT, C; BOUCKAERT, G. Avaliando reformas da gestão pública: uma perspectiva internacional. Revista do Serviço Público, Brasília, v. 53, n. 3, p. 5-29, jul./set. 2002.

RANERUP, Agneta; HENRIKSEN, Helle Zinner. Digital discretion: Unpacking human and technological agency in automated decision making in Sweden’s social services. Social Science Computer Review, v. 40, n. 2, p. 445-461, 2022.

RELYEA, Harold C. E-gov: Introdução e visão geral. Informação governamental trimestral, v. 19, n. 1, pág. 9-35, 2002.

RUIZ, Luis Gonzaga Baca et al. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies, v. 9, n. 9, p. 684, 2016.

SALTON, Gerard. Introduction to modern information retrieval. McGraw-Hill, 1983.

SAVAGET, Paulo; CHIARINI, Tulio; EVANS, Steve. Empowering political participation through artificial intelligence. Science and Public Policy, v. 46, n. 3, p. 369-380, 2019.

STONE, Merlin et al. Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line, v. 33, n. 2, p. 183-200, 2020.

SU, Hsin-Ning; LEE, Pei-Chun. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. scientometrics, v. 85, n. 1, p. 65-79, 2010.

SUN, Tara Qian; MEDAGLIA, Rony. Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, v. 36, n. 2, p. 368-383, 2019.

SUNARTI, Sri et al. Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria, v. 35, p. S67-S70, 2021.

TRIANA CASALLAS, Jenny Alexandra et al. Smart contracts with blockchain in the public sector. International Journal of Interactive Multimedia and Artificial Intelligence, 2020.

UNIÃO INTERNACIONAL DE TELECOMUNICAÇÕES. "AI for Good Global Summit 2017". [S.l.], Disponível em: . Acesso em: 22 nov. 2022.

VALLE-CRUZ, David et al. Uma revisão da inteligência artificial no governo e seu potencial a partir de uma perspectiva de políticas públicas. In: Anais da 20ª Conferência Internacional Anual sobre Pesquisa Governamental Digital. 2019. p. 91-99.

VAN ECK, Nees Jan; WALTMAN, Ludo. VOSviewer manual. Manual for VOSviewer version, v. 1, n. 0, 2011.

VANTI, Nadia Aurora Peres. Da bibliometria à webometria: uma exploração conceitual dos mecanismos utilizados para medir o registro da informação e a difusão do conhecimento. Ciência da informação, v. 31, p. 369-379, 2002.

VOGL, Thomas M. et al. Smart technology and the emergence of algorithmic bureaucracy: Artificial intelligence in UK local authorities. Public Administration Review, v. 80, n. 6, p. 946-961, 2020.

WANG, Changlin; TEO, Thompson SH; JANSSEN, Marijn. Public and private value creation using artificial intelligence: An empirical study of AI voice robot users in Chinese public sector. International Journal of Information Management, v. 61, p. 102401, 2021.

WIRTZ, Bernd W.; MÜLLER, Wilhelm M. An integrated artificial intelligence framework for public management. Public Management Review, v. 21, n. 7, p. 1076-1100, 2019.

WIRTZ, Bernd W.; WEYERER, Jan C.; GEYER, Carolin. Artificial intelligence and the public sector—applications and challenges. International Journal of Public Administration, v. 42, n. 7, p. 596-615, 2019.

WIRTZ, Bernd W.; WEYERER, Jan C.; STURM, Benjamin J. The dark sides of artificial intelligence: An integrated AI governance framework for public administration. International Journal of Public Administration, v. 43, n. 9, p. 818-829, 2020.

WIRTZ, Bernd W.; WEYERER, Jan C.; KEHL, Ines. Governance of artificial intelligence: A risk and guideline-based integrative framework. Government Information Quarterly, v. 39, n. 4, p. 101685, 2022.

WIRTZ, Bernd W.; LANGER, Paul F.; FENNER, Carolina. Artificial intelligence in the public sector-a research agenda. International Journal of Public Administration, v. 44, n. 13, p. 1103-1128, 2021.

YLIPULLI, Johanna; LUUSUA, Aale. Smart cities with a Nordic twist? Public sector digitalization in Finnish data-rich cities. Telematics and Informatics, v. 55, p. 101457, 2020.

YOUNG, Matthew M. et al. Artificial intelligence and administrative evil. Perspectives on Public Management and Governance, v. 4, n. 3, p. 244-258, 2019.

YOUNG, Matthew M.; BULLOCK, Justin B.; LECY, Jesse D. Artificial discretion as a tool of governance: a framework for understanding the impact of artificial intelligence on public administration. Perspectives on Public Management and Governance, v. 2, n. 4, p. 301-313, 2019.

ZUIDERWIJK, Anneke; CHEN, Yu-Che; SALEM, Fadi. Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, v. 38, n. 3, p. 101577, 2021.