Morpho-anatomical structure and physical dormancy breaking of Malvastrum coromandelianum ssp. Coromandelianum (Malvaceae) seeds.

Authors

DOI:

https://doi.org/10.31055/1851.2372.v54.n4.24162

Keywords:

Malvastrum coromandelianum, physical dormancy, scarification, seed morpho- anatomy, water-gap complex

Abstract

Background and aims: The occurrence of seeds with physical dormancy is an obstacle for the use and management of many plant species. Here, we studied the presence of physical dormancy in mericarps (seed-dispersal units) and seeds, the morpho-anatomical structures responsible for physical dormancy, and the effects of possible methods for breaking dormancy in seeds of Malvastrum coromandelianum (Malvaceae). M&M: Imbibition essays were used to confirm the presence of physical dormancy in mericarps and seeds, and the morpho-anatomical seed structure was described by using a scanning electron microscopy. The effects of mechanical, chemical and thermal scarifications on seed germination and seed structure were also evaluated.

Results: Mericarps and scarified seeds increased > 160% of their initial weight, whereas intact seeds increased < 40% of their initial weight. The presence of a palisade cell layer in seed coat and a water-gaps complex in the chalazal region were observed. Higher germination percentages and lower t 50 were registered after mechanical scarification, followed by chemical and thermal scarifications (dry heat). Chemical and thermal scarifications caused the chalazal cap elimination and the contiguous cracks to form around the chalazal region; whereas the formation of a chalazal blister and its elimination were only observed after chemical scarification.

Conclusions: Seeds of M. coromandelianum have physical dormancy. Water enters the seeds through a water-gap complex (Type III compound) located in the chalazal region. Mechanical, chemical and thermal scarifications are effective methods for breaking physical dormancy and increase germination.

References

ARCAMONE, J. R. & P. JAUREGUIBERRY. 2018. Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina. Austral ecology, 43: 567-577.

BASKIN, C. C. & J. M. BASKIN. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego.

CARBONE, L. M., N. AGUIRRE ACOSTA, J. TAVELLA & R. AGUILAR. 2017. Cambios florísticos inducidos por la frecuencia de fuego en el Chaco serrano. Bol. Soc. Argent. Bot. 52: 753-778.

CARRERAS, M. E., E. FUENTES, J. E. MARTINAT & L. M. CARBONE. 2012. Reconocimiento de diásporas de Malveae (Malvaceae) en muestras de suelos de zonas serranas (Sierras Chicas, Córdoba, Argentina) afectadas por incendios. Rodriguésia-Instituto de Pesquisas Jardim Botânico do Rio de Janeiro 63: 501-512.

D’AMBROGIO, A. 1986. Manual de técnicas en histología vegetal. Editorial Hemisferio Sur, Buenos Aires.

DAWS, M. I., D. ORR, D. F. R. P. BURSLEM & C. E. MULLINS. 2006. Effect of high temperature on chalazal plug removal and germination in Apeiba tibourbou Aubl. Seed Sci. Res. 34: 221-225. https://doi.org/10.15258/sst.2006.34.1.26

DI RIENZO, J. A., A. W. GUZMÁN & F. CASANOVES. 2002. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J. Agric. Biol. Environ. Stat. 7: 129-142. https://doi.org/10.1198/10857110260141193

DI RIENZO, J. A., F. CASANOVES, M. G. BALZARINI, L. GONZALEZ, M. TABLADA & C.W. ROBLEDO. InfoStat versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

EGLEY, G. H. & R. N. PAUL JR. 1981. Morphological observations on the early imbibition of water by Sida spinosa (Malvaceae) seed. Am. J. Bot. 68: 1056-1065. https://doi.org/10.1002/j.1537-2197.1981.tb06389.x

ERICKSON, T. E., D. J. MERRITT & S. R. TURNER. 2016. Overcoming physical seed dormancy in priority native species for use in arid-zone restoration programs. Austral. J. Bot. 64: 401-416. https://doi.org/10.1071/BT16059

GALÍNDEZ, G., P. ORTEGA-BAES, C. E. SEAL, M. I. DAWS, A. L. SCOPEL & H.W. PRITCHARD. 2010. Physical seed dormancy in Collaea argentina (Fabaceae) and Abutilon pauciflorum (Malvaceae). SeedSci. Technol. 38: 777-782. https://doi.org/10.15258/sst.2010.38.3.25

GALÍNDEZ, G., G. MALAGRINA, D. CECCATO, T. LEDESMA, L. LINDOW-LÓPEZ & P. ORTEGA-BAES. 2015. Dormición física y conservación ex situ de semillas de Amburana cearensis y Myroxylon peruiferum (Fabaceae). Bol. Soc. Argent. Bot. 50: 153-161.nhttp://dx.doi.org/10.31055/1851.2372.v51.n1.14370

GALÍNDEZ, G., D. CECCATO, G. MALAGRINA, B. PIDAL, G. CHILO, H. BACH, R. FORTUNATO & P. ORTEGA-BAES. 2016. Physical seed dormancy in native legume species of Argentina. Bol. Soc. Argent. Bot. 51: 73-78.

GAMA-ARACHCHIGE, N. S., J. M. BASKIN, R. L. GENEVE & C. C. BASKIN. 2011. Acquisition of physical dormancy and ontogeny of the micropyle–water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae). Ann. Bot. 108:51-64. https://doi.org/10.1093/aob/mcr103

GAMA-ARACHCHIGE, N. S., J. M. BASKIN, R. L. GENEVE & C. C. BASKIN. 2013. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann. Bot. 112: 69-84. https://doi.org/10.1093/aob/mct094

GENEVE, R. L., C. C. BASKIN, J. M. BASKIN, K. G. JAYASURIYA & N. S. GAMA-ARACHCHIGE. 2018. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 28: 186-191. https://doi.org/10.1017/S0960258518000089

ISTA. 2017. International Rules for Seed Testing. International Seed Testing Association, Bassersdorf.

JIANG, T. & X. ZHOU. 2005. Molecular characterization of a distinct begomovirus species and its associated satellite DNA isolated from Malvastrum coromandelianum ssp. coromandelianum in China. Virus Genes 31: 43-48. https://doi.org/10.1007/s11262-004-2198-z

KILDISHEVA, O. A., R. K. DUMROESE & A. S. DAVIS. 2011. Overcoming dormancy and enhancing germination of Sphaeralcea munroana seeds. Hort Science 46: 1672-1676. https://doi.org/10.21273/HORTSCI.46.12.1672

KRAPOVICKAS, A. & J. A. TOLABA. 2012. MALVACEAE Juss. Flora del Valle de Lerma. Aportes Botánicos de Salta, Serie Flora 8: 1-107.

ORTEGA-BAES, P., M. L. DE VIANA & S. SÜHRING. 2002. Germination in Prosopis ferox seeds: effects of mechanical, chemical and biological scarifications. Journal of Arid Environments 50: 185-189. https://doi.org/10.1006/jare.2001.0859

PACKA, D., J. KWIATKOWSKI, Ł. GRABAN & W. LAJSZNER. 2014. Germination and dormancy of Sida hermaphrodita seeds. Seed Sci. Technol. 42: 1-15. https://doi.org/10.15258/sst.2014.42.1.01

R DEVELOPMENT CORE TEAM. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Disponible en: http://www.R-project.org.

ROLSTON, M. P. 1978. Water impermeable seed dormancy. Bot. Rev. 44: 365-396. https://doi.org/10.1007/BF02957854

SANGHAI, D. B., S. V. KUMAR, K. K., SRINIVASAN, H. N. ASWATHARAM &C. S. SHREEDHARA. 2013. Pharmacognostic and phytochemical investigation of the leaves of Malvastrum coromandelianum (L.) Garcke. Anc Sci Life.33: 39-44. https://doi.org/10.4103/0257-7941.134596

VAN ASSCHE, J. A. & F. E. A. VANDELOOK. 2006. Germination ecology of eleven species of Geraniaceae and Malvaceae, with special reference to the effects of drying seeds. Seed Sci. Res. 16: 283-290. https://doi.org/10.1017/SSR2006255

ZULOAGA, F. O., O. MORRONE & M. BELGRANO. 2008. Catálogo de las Plantas Vasculares del Conosur. Versión base de datos en sitio web del Instituto Darwinion. Argentina. Edición on-line: http://www2.darwin.edu.ar/Proyectos/FloraArgentina/fa.htm [Acceso: Enero 2019].

Published

2019-11-27

Issue

Section

Original Articles

How to Cite

“Morpho-Anatomical Structure and Physical Dormancy Breaking of Malvastrum Coromandelianum Ssp. Coromandelianum (Malvaceae) Seeds”. 2019. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 54 (4): 509-17. https://doi.org/10.31055/1851.2372.v54.n4.24162.

Similar Articles

101-110 of 254

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)