Analysis of genetic diversity in fragmented and continuous populations of Aspidosperma quebracho-blanco (Apocynaceae) from the semi-arid Chaco

Authors

  • Noelia E. A. Almirón Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Nordeste, Corrientes, Argentina https://orcid.org/0000-0002-5910-5806
  • Viviana Solís Neffa Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Nordeste, Corrientes, Argentina.Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina https://orcid.org/0000-0002-7657-0806

DOI:

https://doi.org/10.31055/1851.2372.v59.n4.44896

Keywords:

AFLP, fragmentation, genetic structure

Abstract

Background and aims: The loss and fragmentation of the Chaco Forest due to deforestation could affect the genetic diversity of species. Previous analyses of Aspidosperma quebracho-blanco, an emblematic forest species of the region, suggested that populations in the northern Semi-arid Chaco of Argentina are of interest for in situ conservation and restoration. Thus, we analyzed the genetic diversity and structure of fragmented and continuous populations of Aspidosperma quebracho-blanco from this region to assess the risk of genetic erosion and the role of fragmented habitats in the conservation of this species. 

M&M: Using 4 AFLP marker combinations, the genetic variability and structure of 49 individuals from 2 continuous and 3 fragmented populations of A. quebracho-blanco were analyzed. This analysis was conducted in the context of territorial forest planning, considering the distribution of protected areas, ecological corridors, land use, and the area of the forest fragments. 

Results: The differences in the estimated genetic variability indices between the continuous and fragmented populations studied were not significant (pHe=0.62, pSh=0.53, p%P=0.68). The genetic structure is moderate and correlates with the distance between populations. The most vulnerable populations are located in areas where land use is allowed.

Conclusions: Forest fragments are important for the conservation of A. quebracho-blanco. However, in the short term, ecological, and demographic factors may have a greater impact on the viability of its populations than genetic erosion caused by fragmentation.

References

AGUILAR, R., M. QUESADA, L. ASHWORTH, D. Y. HERRERIAS & J. LOBO 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17: 5177-5188. https://doi.org/10.1111/j.1365-294X.2008.03971.x

ALMIRÓN, N. E. A., G. M. VIA DO PICO, A. COSACOV, E. N. PAREDES, G. A. ROBLEDO DOBLADEZ & V. G. S. NEFFA. 2022. The geography of Aspidosperma quebracho-blanco vulnerability, an emblematic species of the South American Gran Chaco. For. Ecol. Manag. 523: 120503. https://doi.org/10.1016/j.foreco.2022.120503

BARCHUK A. H., A.VALIENTE-BANUET & M. P. DÍAZ. 2005. Effect of shrubs and seasonal variability of rainfalls in the establishment of Aspidosperma quebracho-blanco Schlecht in two edaphically contrasting environments. Ecol. Austral. 30: 695-705. https://doi.org/10.1111/j.1442-9993.2005.01511.x

BARCHUK, A. H. & M. P. DÍAZ. 1999. Regeneration and structure of Aspidosperma quebracho-blanco Schld. in the Arid Chaco (Córdoba, Argentina). For. Ecol. Manag. 118: 31-36. https://doi.org/10.1016/S0378-1127(98)00484-8

BARCHUK, A. H & M. P. DÍAZ. 2000. Vigor de Crecimiento y Supervivencia de plantaciones de Aspidosperma quebracho-blanco y de Prosopis chilensis en el Chaco árido. Quebracho 8: 17-29.

BONIN, A., D. EHRICH & S. MANEL. 2007. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol. 16: 3737-3758. https://doi.org/10.1111/j.1365-294X.2007.03435.x

BOTELHO, T. S. G., G. M. PAGGI & M. A. FARINACCIO. 2021. Genetic diversity and fragmentation of Aspidosperma quebracho-blanco (Apocynaceae) natural habitats, conservation issues in chaco forest and savanna biomes. Darwiniana 9: 115-129. http://dx.doi.org/10.14522/darwiniana.2021.91.932

BRITOS, A. H. & A. H. BARCHUK. 2013. Dinámica de la cobertura vegetal y los usos de la tierra a través de modelos de no-equilibrio. Rev. Teledetec. 40: 88-109.

CHATURVEDI, R. K., S. K. PANDEY, A. TRIPATHI, L. GOPARAJU, A. S. RAGHUBANSHI & J. S. SINGH. 2024. Variations in the plasticity of functional traits indicate the differential impacts of abiotic and biotic factors on the structure and growth of trees in tropical dry forest fragments. Front. Plant Sci. 14: 1181293. https://doi.org/10.3389/fpls.2023.1181293

DAMASCENO, J. O., E. A. RUAS, L. A. RODRIGUES, C. F. RUAS, E. BIANCHINI, J. A. PIMENTA & P. M. RUAS. 2011. Genetic differentiation in Aspidosperma polyneuron (Apocynaceae) over a short geographic distance as assessed by AFLP markers. Genet. Mol. Res. 10: 1180-1187. https://doi.org/10.4238/vol10-2gmr1126

DE KORT, H., J. G. PRUNIER, S. DUCATEZ, O. HONNAY, M. BAGUETTE, V. M. STEVENS & S. BLANCHET. 2021. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Comm. 12: 516. https://doi.org/10.1038/s41467-021-20958-2

DICK, C. W., O. J. HARDY, F. A. JONES & R. J. PETIT. 2008. Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Trop. Plant. Biol. 1: 2023. https://doi.org/10.1007/s12042-007-9006-6

DINERSTEIN, E., D. OLSON, A. JOSHI, C. VYNNE, ... & M. SALEEM. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67: 534-545. https://doi.org/10.1093/biosci/bix014

EARL, D. A. E. & B. M. VON HOLDT. 2012. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7

EVANNO, G., S. REGNAUT & J. GOUDET. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

EXPOSITO-ALONSO, M., T. R. BOOKER, L. CZECH, L. GILLESPIE, … & E. ZESS. 2022. Genetic diversity loss in the Anthropocene. Science 377: 1431-1435. DOI: 10.1126/science.abn564

GE, S. S., L. M. HE, W. HE, R. YAN, ... & K. M. WU. 2021. Laboratory-based flight performance of the fall armyworm Spodoptera frugiperda. J. Integr. Agric. 20: 707-714.https://doi.org/10.1016/S2095- 3119(20)63166-5

GONZÁLEZ, A. V., V. GÓMEZ-SILVA, M. J. RAMÍREZ & FONTÚRBEL, F. E. 2019. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Biol. Conserv. 34: 711-720. https://doi.org/10.1111/cobi.13422

GRUPO DE TRABAJO DE LA UICN-CMAP SOBRE OMEC. 2021. Reconocimiento y reporte de otras medidas efectivas de conservación basadas en áreas. UICN, Gland. https://doi.org/10.2305/IUCN.CH.2019.PATRS.3.es

HOBAN, S., M. BRUFORD, J. D. U. JACKSON, M. LOPES-FERNANDES, … & L. LAIKRE. 2020. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248: 108654. https://doi.org/10.1016/j.biocon.2020.108654

HONNAY, O. & H. JACQUEMYN. 2007. Susceptibility of common and rare species to the genetic consequences of habitat fragmentation. Conserv. Biol. 21: 823-831. https://doi.org/10.1111/j.1523-1739.2006.00646.x

HUNZIKER, A. T. 1946. Raíces gemíferas en algunas plantas leñosas argentinas. Revista Argen. Agron. 13: 57-54.

JACOBSON, L. A. 1965. Mating and Oviposition of the Pale Western Cutworm, Agrotis orthogonia Morrison (Lepidoptera: Noctuidae), in the Laboratory. Can. Entomol. 97: 994-1000.

KARRA, K., C. KONTGIS, Z. STATMAN-WEIL, J. C. MAZZARIELLO, ... & S. P. BRUMBY. 2021. Global land use/land cover with Sentinel 2 and deep learning. En: 2021 International Geoscience and Remote Sensing Symposium IGARSS, pp. 4704-4707. Institute of Electrical and Electronics Engineers, Bruselas. doi: 10.1109/IGARSS47720.2021.9553499.

KRAMER, A. T., J. L. ISON, M. V. ASHLEY & H. F. HOWE. 2008. The paradox of forest fragmentation genetics. Conserv. Biol. 22: 878-885. https://doi.org/10.1111/j.1523-1739.2008.00944.x

KYRIAZIS, C. C., R. K. WAYNE & K. E. LOHMUELLER. 2021. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. 5: 33-47. https://doi.org/10.1002/evl3.209

LIN, S. & G. BERNARDELLO. 1999. Flower structure and reproductive biology in Aspidosperma quebracho-blanco (Apocynaceae), a tree pollinated by deceit. Int. J. Plant Sci. 160: 869-878. https://doi.org/10.1086/314187

MANTEL, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220.

MAY, F.; B. ROSENBAUM, F. M. SCHURR & J. M. CHASE. 2019. The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 9: 2775-2790. https://doi.org/10.1002/ece3.4951

MEIRMANS, P. G. 2020. GENODIVE version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20: 1126-1131. https://doi.org/10.1111/1755-0998.13145

MORELLO, J., S. D. MATTEUCCI, A. F. RODRIGUEZ, M. E. SILVA, … & P. LLANA. 2012. Ecorregiones y complejos ecosistémicos de Argentina. Orientación Gráfica Editora, Buenos Aires.

MOSCIARO, M. J., N. C. CALAMARI, P. L. PERI, N. F. MONTES, … & J. VOLANTE. 2022. Future scenarios of land use change in the Gran Chaco: How far is zero-deforestation? Reg. Environ. Change. 22: 115.

NAI BREGAGLIO, M., U. KARLIN & R. COIRINI. 2001. Efecto del desmonte selectivo sobre la regeneración de la masa forestal y la producción de pasturas, en el Chaco Árido de la provincia de Córdoba, Argentina. Multequina 10: 17-24.

NAUMANN, M. 2006. Atlas del Gran Chaco Sudamericano. Sociedad Alemana de Cooperación Técnica (GTZ). ErreGé & Asoc., Buenos Aires.

OLSON, D. M., E. DINERSTEIN, E. D. WIKRAMANAYAKE, N. D. BURGESS, … & K. R. KASSEM. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioSci. 51: 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

PEAKALL, R. & SMOUSE, P. E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

PFLÜGER, F. J., J. SIGNER & N. BALKENHOL. 2019. Habitat loss causes non-linear genetic erosion in specialist species. Glob. Ecol. Conserv. 17: e00507. https://doi.org/10.1016/j.gecco.2018.e00507

PINTO, A. V., B. HANSSON, I. PATRAMANIS, H. E. MORALES & C. VAN OOSTERHOUT. 2023. The impact of habitat loss and population fragmentation on genomic erosion. Conserv. Genet. 25: 49-57. https://doi.org/10.1007/s10592-023-01548-9

POMETTI, C. L., C. F. BESSEGA, J. C. VILARDI & B. O. SAIDMAN. 2012. Landscape genetic structure of natural populations of Acacia caven in Argentina. Tree Genet. Genomes 8: 911-924. https://doi.org/10.1007/s11295-012-0479-6

POMETTI, C. L., C. F. BESSEGA, J. C. VILARDI, M. EWENS & B. O. SAIDMAN. 2016. Genetic variation in natural populations of Acacia visco (Fabaceae) belonging to two subregions of Argentina using AFLP. Plant Syst. Evol. 302: 901-910. https://doi.org/10.1007/s00606-016-1306-6.

POMETTI, C. L, C. F. BESSEGA, A. CIALDELLA, M. EWENS, ... & J. C. VILARDI. 2018. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae). PLoS ONE 13: e0192107. https://doi.org/10.1371/journal.pone.0192107

PRITCHARD, J. K., M. STEPHENS & P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1534/genetics.116.195164

QGIS DEVELOPMENT TEAM. 2018. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Disponible en: https://qgis.org.

QUESADA, M., K. E. STONER, J. A. LOBO, D. Y. HERRERIAS, … & V. ROSAS GUERRERO. 2004. Effects of Forest Fragmentation on Pollinator Activity and Consequences for Plant Reproductive Success and Mating Patterns in Bat pollinated Bombacaceous Trees. Biotropica 36: 131-138. https://doi.org/10.1111/j.1744-7429.2004.tb00305.x

R CORE TEAM. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: http://www.R-project.org/.

RIVAS, C. A. & NAVARRO CERRILLO, R. M. 2024. Forest fragmentation and connectivity in South American dry forests. Biodivers. Conserv. 33:3015-3037. https://doi.org/10.1007/s10531-024-02894-x

RONDINA, R. V. D., A. L. BANDONI & J. COUSSIO. 2008. Especies medicinales argentinas con potencial actividad analgésica. Dominguezia 24: 47-69.

SANDOVAL, M. L. & R. M. BARQUEZ. 2013. The Chacoan bat fauna identity: patterns of distributional congruence and conservation implications. Rev. Chil. Hist. Nat. 86: 75-94. http://dx.doi.org/10.4067/S0716-078X2013000100007

SECRETARÍA DE AMBIENTE Y DESARROLLO SUSTENTABLE DE LA DE NACIÓN Y ADMINISTRACIÓN DE PARQUES NACIONALES. 2014. Corredores Ecológicos para el Chaco argentino, definición y pautas metodológicas para su implementación. Subsecretaría de Planificación y Política Ambiental. Argentina, Buenos Aires. Disponible en https://visorgranchaco.org/wp-content/uploads/2015/08/Corredores_Chaco_Argentina.pdf

SHAPIRO, S. S. & M. B. WILK. 1965. Analysis of variance test for normality (complete samples). Biometrika 52: 591-611.

SIEGEL, T. D., W. J. COOPER, R. E. FORKNER, W. F. LAURANCE, ... & D LUTHER. 2024. Forest fragmentation effects on mutualistic interactions: frugivorous birds and fruiting trees. Oikos: e10383. https://doi.org/10.1111/oik.10383

SILVA BARROS, L., P. T. YAMAMOTO, P. MERTEN & S. E. NARANJO. 2020. Sublethal Effects of Diamide Insecticides on Development and Flight Performance of Chloridea virescens (Lepidoptera: Noctuidae): Implications for Bt Soybean Refuge Area Management. Insects 11: 269. https://doi.org/10.3390/insects11050269

SISTRI, G., M. MENCHETTI, L. SANTINI, L. PASQUALI,… & L. DAPPORTO. 2021. The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conserv. Divers. 15: 136-148. https://doi.org/10.1111/icad.12538

SOUSA, T. R., F. R. C. COSTA, T. V. BENTOS, N. LEAL FILHO, … & I. O. RIBEIRO. 2017. The effect of forest fragmentation on the soil seed bank of Central Amazonia. For. Ecol. Manag. 393: 105- 112. https://doi.org/10.1016/j.foreco.2017.03.020

SLATKIN, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65. https://doi.org/10.1111/j.1558-5646.1985.tb04079.x

SLATKIN, M. 1994. Gene flow and population structure. En: REAL, L. (ed.), Ecological Genetics, pp. 3-18. Princeton University Press, Nueva Jersey. https://doi.org/10.1515/9781400887262-003

SNEDECOR, G. W. & W. G.COCHRAN. 1989. Statistical Methods. 8th ed. Iowa State University press, Ames.

TÁLAMO A., J. LÓPEZ DE CASENAVE, M. NÚÑEZ-REGUEIRO & S. M. CAZIANI. 2013. Regeneración de plantas leñosas en el Chaco semiárido argentino: relación con factores bióticos y abióticos en micrositios creados por el aprovechamiento forestal. Bosque 34: 53-62

TORRES BASSO, M. B. 2014. Estudio de la diversidad genética poblacional Aspidosperma Quebracho-blanco Schltdl. en Chaco Árido. Tesis Doctoral, Universidad Nacional de Córdoba, Argentina. Disponible en: https://rdu.unc.edu.ar/handle/11086/11661

UNIDAD DE MANEJO DEL SISTEMA DE EVALUACIÓN FORESTAL -UMSEF. 2002. Cartografía y Superficie de Bosque Nativo de Argentina. Dirección de Bosques, Secretaría de Ambiente y Desarrollo Sustentable, Ministerio de Salud y Ambiente. Buenos Aires.

VAN OOSTERHOUT, C.V., S. A. SPEAK, T. BIRLEY, C. BORTOLUZZI, L… & H. E. MORALES. 2022. Genomic erosion in the assessment of species extinction risk and recovery potential. bioRxiv: 2022-09. https://doi.org/10.1101/2022.09.13.507768

WRIGHT, S. 1940. Breeding structure of populations in relation to speciation. Am. Nat. 74: 232-248. https://doi.org/10.1086/280891

ZALLES, V., M. C.HANSEN, P. V. POTAPOV, D. PARKER, … & I. KOMMAREDY. 2021. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 7: eabg1620. https://doi.org/10.1126/sciadv.abg1620

Published

2024-12-27

Issue

Section

Genetics & Evolution

How to Cite

“Analysis of Genetic Diversity in Fragmented and Continuous Populations of Aspidosperma Quebracho-Blanco (Apocynaceae) from the Semi-Arid Chaco”. 2024. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 59 (4). https://doi.org/10.31055/1851.2372.v59.n4.44896.

Similar Articles

1-10 of 217

You may also start an advanced similarity search for this article.