El sistema genético de Paspalum lilloi (Poaceae), especie endémica de las Cataratas del Iguazú

Autores

  • Anna Verena Reutemann Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste. Sargento Cabral 2131, 3400, Corrientes, Argentina https://orcid.org/0000-0003-1043-4999
  • ERIC MARTINEZ 1Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste. Sargento Cabral 2131, 3400, Corrientes, Argentina https://orcid.org/0000-0002-7769-0199
  • Gabriel H. Rua Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica Sistemática, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina https://orcid.org/0000-0003-3601-786X
  • MARA SCHEDLER 1Instituto de Botánica del Nordeste, CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste. Sargento Cabral 2131, 3400, Corrientes, Argentina https://orcid.org/0000-0001-6421-3169
  • JULIO DAVIÑA Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical CONICET-UNaM, nodo Posadas, Universidad Nacional de Misiones, Rivadavia 2370, 3300 Posadas, Argentina https://orcid.org/0000-0002-1886-7521
  • ANA ISABEL HONFI Instituto de Biología Subtropical CONICET- UNaM, Nodo Posadas, Universidad Nacional de Misiones, Posadas, Argentina https://orcid.org/0000-0002-0915-2129

DOI:

https://doi.org/10.31055/1851.2372.v56.n3.33273

Palavras-chave:

autogamia, compatibilidad polen-pistilo, endemismo, fertilidad, Paspalum lilloi, polinización heteroespecífica

Resumo

Introducción y objetivos: Paspalum lilloi (Poaceae) es una especie diploide y endémica de las Cataratas del Iguazú y áreas circundantes, cuya biología reproductiva y área de distribución geográfica actual es desconocida. Los objetivos de este trabajo son conocer su sistema genético, mediante análisis del modo reproductivo, compatibilidad polen-pistilo y fertilidad, y delimitar la distribución y estado de conservación del endemismo.

M&M: El sistema genético se determinó mediante citoembriología de sacos embrionarios, viabilidad y germinación in vivo de granos de polen, compatibilidad polen-pistilo, fertilidad y análisis de semillas por citometría de flujo. El área de distribución geográfica se delimitó mediante especímenes de herbario y colecciones propias.

Resultados: Se observaron sacos embrionarios meióticos de tipo Polygonum en todos los óvulos analizados. La viabilidad media y germinación in vivo del polen fue de 95,22% y 41,79%, respectivamente. La tasa de crecimiento medio del tubo polínico en el estigma propio fue de 59,2 ± 6,39 µm / 3h. La producción de semillas en autopolinización fue del 93,61% y disminuyó al 52,72% cuando hay oferta de polen heteroespecífico. Los cariopsis analizados por citometría de flujo mostraron una relación de ploidía embrión: endospermo 2: 3, indicando un origen sexual. Paspalum lilloi es una especie reófila, rupícola y adaptada a saltos y cascadas, cuyo endemismo está en peligro crítico y circunscripto a las Cataratas del Iguazú.

Conclusiones: Paspalum lilloi es diploide, sexual, autocompatible y autofértil, está geográficamente restringida a las Cataratas del Iguazú y adaptada a hábitats altamente especializados, cuya conservación resultará clave para evitar su extinción.

Biografia do Autor

  • ANA ISABEL HONFI, Instituto de Biología Subtropical CONICET- UNaM, Nodo Posadas, Universidad Nacional de Misiones, Posadas, Argentina

    DEPARTAMENTO DE GENETICA, FCEQyN- UNaM

    PROFESOR REGULAR DE GENETICA EVOLUTIVA

    INVESTIGADOR INDEPENDIENTE CONICET

     

     

Referências

ALISCIONI, S. S. 2000. Anatomía ecológica de algunas especies del género Paspalum (Poaceae, Panicoideae, Paniceae). Darwiniana 38: 187-207.

ALISCIONI, S. S. 2002. Contribución a la filogenia del género Paspalum (Poaceae: Panicoideae: Paniceae). Ann. Missouri Bot. Gard. 89: 504-523. https://doi.org/10.2307/3298593

ANTON, A. & A. E. COCUCCI. 1984. The grass megagametophyte and its possible phylogenetic implications. Pl. Syst. & Evol. 146: 117-121. https://doi.org/10.1007/BF00984058

BURSON, B. L. 1986. Pollen germination, pollen tube growth and fertilization following self and interspecific pollination of Paspalum species. Euphytica 36: 641-650. https://doi.org/10.1007/BF00041514

BURSON, B. L. 1991. Genome relationships between tetraploid and hexaploid biotypes of Dallisgrass, Paspalum dilatatum. Bot. Gaz. 152: 219-223. https://doi.org/10.1086/337883

BURSON, B. L. 1992. Cytogenetic relationships between Paspalum dilatatum y P. cromyorrhizon, P. indecorum y P. laxum. Int. J. Plant Sci. 153: 244-249. https://doi.org/10.1086/297028

BURSON, B. L. 1997. Apomixis and sexuality in some Paspalum species. Crop Sci. 37: 1347-1351. https://doi.org/10.2135/cropsci1997.0011183X003700040052x

BURTON, G. W. & W. W. HANNA. 1992. Using apomictic tetraploids to make a self-incompatible diploid Pensacola bahiagrass clone set seed. J. Hered. 83: 305-306. https://doi.org/10.1093/oxfordjournals.jhered.a111217

CHASE, A. 1929. The North American species of Paspalum. Contr. U.S. Natl. Herb. 28: I-XVII: 1-310.

CLARKE J. L. 1851. Researches into the Structure of the Spinal Chord. Phil. Trans. Roy. Soc. London, 141: 607-621. https://doi.org/10.1098/rstl.1851.0029

CONNOR, H. E. 1979. Breeding systems in the grasses: a survey. New Zealand J. of Bot. 17: 547-574. https://doi.org/10.1080/0028825X.1979.10432571

de NETTANCOURT, D. 2001. Incompatibility and incongruity in wild and cultivated plants, 2nd Edn. Berlin: Springer. https://doi.org/10.1007/978-3-662-04502-2

DAWKINS, M. D. & J. N. OWENS. 1993. In vitro and In vivo Pollen Hydration, Germination, and Pollen-Tube Growth in White Spruce, Picea glauca (Moench) Voss. Int. J Plant Sci. 154: 506-521. https://doi.org/10.1086/297134

DELGADO, L., F. GALDEANO, M. E. SARTOR, C. L. QUARIN, F. ESPINOZA & J. P. A ORTIZ. 2014. Analysis of variation for apomictic reproduction in diploid Paspalum rufum. Ann. Bot. 113: 1211-1218. https://doi.org/10.1093/aob/mcu056

DENHAM, S. S. 2005. Revisión sistemática del subgénero Harpostachys de Paspalum (Poaceae: Panicoideae: Paniceae). Ann. Missouri Bot. Gard. 92: 463-532. https://doi.org/10.1007/s00606-010-0327-9

ESPINOZA, F. & C. L. QUARIN. 1997. Cytoembryology of P. chaseanum and sexual diploid biotypes of two apomictic Paspalum species. Aust. J. Bot. 45: 871- 877. https://doi.org/10.1071/BT96055

ESPINOZA, F., M. H. URBANI, E. J. MARTINEZ & C. L. QUARIN. 2001. The breeding systems of three Paspalum species with forage potential. Trop. Grassl. 35: 211-217.

GALDEANO, F., M. H. URBANI, M. E. SARTOR, A. I. HONFI, F. ESPINOZA & C. L. QUARIN. 2016. Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy. J. Plant Res. 129: 697–710. https://doi.org/10.1007/s10265-016-0813-4

HIJMANS, R. J., L. GUARINO, C. BUSSINK, P. MATHUR, M. CRUZ, I. BARRENTES & E. ROJAS. 2004. DIVA-GIS. V 5.0. A geographic information system for the analysis of species distribution data.

HIJMANS, R. J. & J. ELITH. 2017. Species distribution modeling with R. R CRAN Project.

HOJSGAARD, D. H., A. I. HONFI, G. H. RUA & J. R. DAVIÑA. 2009. Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet. Resour. Crop. Evol. 56: 533-545. https://doi.org/10.1007/s10722-008-9384-0

HOJSGAARD, D. H. & E. HÖRANDL. 2019. The Rise of Apomixis in Natural Plant Populations. Front. Plant Sci. 10: 358. https://doi.org/10.3389/fpls.2019.00358

HOJSGAARD, D. & M. SCHARTL. 2021. Skipping sex: A nonrecombinant genomic assemblage of complementary reproductive modules. Bioessays 43: e2000111. https://doi.org/10.1002/bies.202000111

HONFI, A. I., C. L. QUARIN & J. F. M VALLS. 1990. Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30: 87-94.

HONFI, A. I. 2003. Citoembriología de poliploides impares en el género Paspalum L. (Panicoideae: Gramineae). Tesis Doctoral, Universidad Nacional de Córdoba, Argentina.

HONFI, A. I., O. MORRONE & F. O. ZULOAGA. 2021. Chromosome numbers and ploidy levels of some Paniceae and Paspaleae species (Poaceae, Panicoideae). Ann. Missouri Bot. Gard. 106: 234-244. https://doi.org/10.3417/2021585

HÖRANDL, E. 2010. The evolution of self-fertility in apomictic plants. Sex. Plant Reprod. 23: 73-86. https://doi.org/10.1007/s00497-009-0122-3

KHO, Y. O. & J. BAER. 1968. Observing pollen tubes by means of fluorescence. Euphytica, 17: 298-302. https://doi.org/10.1007/BF00021224

LARSON B. M. H. & S. C. H. BARRETT. 2000. A comparative analysis of pollen limitation in flowering plants. Biol. J. Linn. Soc. 69: 503-520. https://doi.org/10.1006/bijl.1999.0372

MARTINEZ E. J. & C. L. QUARIN. 1999. Citoembriología y comportamiento reproductivo de un citotipo diploide de Paspalum hydrophilum y sus híbridos con P. palustre (Poaceae, Paniceae). Darwiniana 37: 243-251

MORRONE, O., L. AAGESEN, M. A. SCATAGLINI, D. L. SALARIATO, S. S. DENHAM, M. A. CHEMISQUY & F. O. ZULOAGA. 2012. Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28: 333-356. https://doi.org/10.1111/j.1096-0031.2011.00384.x

McLERNON, S. M., S. D. MURPHY & L. W. AARSSEN. 1996. Heterospecific pollen transfer between sympatric species in a mid-successional old-field community. Am. J. Bot. 83: 1168-1174. https://doi.org/10.1002/j.1537-2197.1996.tb13897.x

NICORA, E. G. & Z. E. RÚGOLO DE AGRASAR. 1987. Los géneros de gramíneas de América austral. Buenos Aires: Editorial Hemisferio Sur.

NOGLER G. A. 1984. Gametophytic apomixis. In: JOHRI, B. M. (Ed.) Embryology of angiosperms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69302-1_10

ORTIZ J. P. A., C. L. QUARIN, S. C. PESSINO, C. ACUÑA, E. J. MARTÍNEZ, F. ESPINOZA, D. H. HOJSGAARD, M. E. SARTOR, M. E. CÁCERES & F. PUPILLI. 2013. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann. Bot. 112: 767-787. https://doi.org/10.1093/aob/mct152

PARODI, L. R. & E. G. NICORA. 1966, inéd. Apuntes para una monografía del género. No publicado, copia en PEFyGV-UNaM.

QUARIN, C. L. & G. A. NORRMANN. 1987. Cytology and reproductive behavior of Paspalum equitans, P. ionanthum, and their hybrids with diploid and tetraploid cytotypes of P. cromyorrhizon. Bot. Gaz. 148: 386-391. https://doi.org/10.1086/337667

QUARIN C. L. & B. L. BURSON. 1991. Cytology of Sexual and apomictic Paspalum species. Cytologia 56: 223-228. https://doi.org/10.1508/cytologia.56.223

QUARIN, C. L. 1992. The nature of apomixis and its origin in Panicoid grasses. Apomixis Newsl. 5: 8-15.

REUTEMANN, A. V., E. J. MARTÍNEZ, M. SCHEDLER, G. H. RUA, J. R. DAVIÑA & A. I. HONFI. 2017. Paspalum lilloi Hack. (Poaceae). In: Marhold, K. (ed.), IAPT/IOPB chromosome data 26. Taxon 66: 32-33. https://doi.org/10.12705/666.30

REUTEMANN, A. V. 2020. Diversidad genética en especies del género Paspalum (Poaceae) con diferentes sistemas genéticos. Tesis Doctoral, Universidad Nacional de Córdoba.

RUA, G. H., P. R. SPERANZA, M. VAIO & M. ARAKAKI. 2010. A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. Plant Syst. Evol. 288: 227-243. https://doi.org/10.1007/s00606-010-0327-9

SCATAGLINI, M. A., F. O. ZULOAGA, L. M. GIUSSANI, S. S. DENHAM & O. MORRONE. 2014. Phylogeny of New World Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Plant Syst. Evol. 300: 1051-1070. https://doi.org/10.1007/s00606-013-0944-1

SWANSON, R., A. F. EDLUND & D. PREUSS. 2004. Species specificity in pollen-pistil interactions. Annu. Rev. Genet. 38: 793-818.

https://doi.org/10.1146/annurev.genet.38.072902.092356

TAS, I. C. Q. & P. J. VAN DIJK. 1999. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83: 707–714.

https://doi.org/10.1046/j.1365-2540.1999.00619.x

TÜRPE, A. 1967. Histotaxanomía de las especies argentinas del género Paspalum. Lilloa 32: 1–272.

UICN v.14. 2019. Comité de Estándares y Peticiones de la UICN. 2019. Directrices de uso de las Categorías y Criterios de la Lista Roja de la UICN. Versión 14. Disponible en https://www.iucnredlist.org/es/resources/redlistguidelines

URBANI, M. H. 1996. Estudios sobre citología, sistema reproductivo y compatibilidad polen-pistilo en Panicum dichotomiflorum y Paspalum fasciculatum (Gramineae, Paniceae). Darwiniana 34: 193-198.

VALLS, J. F. M. 1987. Recursos genéticos de especies de Paspalum no Brasil. Encuentro Internacional sobre mejoramiento genético de Paspalum 3-13, Nova Odessa, Brasil.

YOUNG, B. A., R. T. SHERWOOD & E. C. BASHAW. 1979. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Canad. J. Bot. 57: 1668-1672. https://doi.org/10.1139/b79-204

ZILLI, A. L., E. A. BRUGNOLI, F. MARCÓN, M. B. BILLA, E. F. RIOS, E. J. MARTÍNEZ & C. A ACUÑA. 2015. Heterosis and expressivity of apospory in tetraploid bahiagrass hybrids. Crop Sci. 55: 1189-1201. https://doi.org/10.2135/cropsci2014.10.0685

ZULOAGA, O. F., O. MORRONE, G. DAVIDSE, T. S. FILGUEIRAS, P. M PETERSON, R. J. SORENG & E. JUDZIEWICZ. 2003. Catalogue of New World Grasses (Poaceae): III Subfamilies Panicoideae, Aristidoideae, Arundinoideae and Danthonioideae. Contrib. U. S. Nat. Herb. Smithsonian Inst. 46: 1-662.

ZULOAGA, F. O. & O. MORRONE. 2005. Revisión de las Especies de Paspalum para América del Sur Austral. Monogr. Syst. Bot. Mo. Bot. Gard. 102: 1-297.

ZULOAGA, O. F., O. MORRONE & J. F. PENSIERO. 2014. Gramineae VI. Paniceae II. Conservatoire et Jardin botaniques de la Ville de Genève (Ed.) Flora del Paraguay 45: 1-399.

Publicado

2021-09-07

Edição

Seção

Biología Reproductiva

Como Citar

“El Sistema genético De Paspalum Lilloi (Poaceae), Especie endémica De Las Cataratas Del Iguazú ”. 2021. Boletín De La Sociedad Argentina De Botánica 56 (3). https://doi.org/10.31055/1851.2372.v56.n3.33273.

Artigos Semelhantes

91-100 de 103

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.