Estudio Aerodinámico de Perfiles con Espesor con el Método de Red de Vórtices
Palabras clave:
Perfiles no Delgados, Aerodinámica, Vortices Puntuales, Flujo PotencialResumen
En este trabajo, se presenta un estudio numérico de las características aerodinámicas de perfiles alares mediante el método de red de vórtices (VLM). La implementación computacional desarrollada permite simulaciones del tipo estacionarias, cuasi-estacionarias e inestacionarias de perfiles aerodinámicos en dos dimensiones. En este trabajo, se cuantifica el error de estimación de la herramienta computacional en función de la geometría del perfil alar: espesor y curvatura de la línea media (combadura), y de la discretización. Se observa que para los perfiles NACA el error de estimación de la pendiente de sustentación aumenta al aumentar el espesor del perfil, pero se mantiene acotado entre el 5% y el 20% para espesores de hasta el 12%. Con respecto a la curvatura la línea media del perfil, el error en la estimación de la sustentación para ángulo de ataque nulo aumenta al aumentar la combadura y puede alcanzar el 50 %. Finalmente, para el perfil DU97W300, la herramienta numérica demuestra un gran potencial ya que predice con gran precisión la distribución de presión experimental para ángulos de ataque relativamente pequeños y también estima con un error menor al 10% la pendiente de sustentación y sustentación para ángulo de ataque nulo.
Descargas
Referencias
[1] Abbott, I. H. A. y Von Doenhoff, A. E. (1959). Theory of wing sec- tions, including a summary of airfoil data. Dover Publications.
[2] Antman, S. (2005). Nonlinear Problems of Elasticity, volumen 107 de Applied Mathematical Sciences. Springer.
[3] Baldacchino, D., Ferreira, C., Tavernier, D. D., Timmer, W. A., y van Bussel, G. J. W. (2018). “Experimental parameter study for passive vortex generators on a 30% thick airfoil”. Wind Energy, 21(9):745– 765.
[4] Chow, C. Y. y Huang, M. K. (1982). “The initial lift and drag of an impulsively started airfoil of finite thickness”. Journal of Fluid Mechanics, 118:393–409.
[5] Drela, M. (1989). “Xfoil: An analysis and design system for low rey- nolds number airfoils”. En: Low Reynolds number aerodynamics, pp. 1–12. Springer.
[6] Drela, M. y Giles, M. B. (1987). “Viscous-inviscid analysis of transonic and low reynolds number airfoils”. AIAA journal, 25(10):1347–1355.
[7] Graham, J. M. R. (1983). “The lift on an aerofoil in starting flow”. Journal of Fluid Mechanics, 133:413–425.
[8] Jacobs, E., Ward, K., y Pinkerton, R. (1935). “The characteristics of 78 related airfoils sections from tests in the variable-density wind tunnel”. Reporte técnico No 460, National Advisory Commitee for Aeronautics (NACA), Washington D.C.
[9] Katz, J. (2019). “Convergence and accuracy of potential-flow methods”. Journal of Aircraft, 56(6):2371–2375.
[10] Katz, J. y Plotkin, A. (2001). Low-speed aerodynamics. Cambridge university press.
[11] Mook, D. T. y Dong, B. (1994). “Perspective: numerical simulations of wakes and blade-vortex interaction”. J. Fluids Eng., 116(1):5–21.
[12] Prandtl, L. y Tietjens, O. G. (1934). Fundamentals of hydro-and ae- romechanics. Republished by Dover in 1957.
[13] Pullin, D. I. y Perry, A. E. (1980). “Some flow visualization experi- ments on the starting vortex”. Journal of Fluid Mechanics, 97(2):239– 255.
[14] Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M., y Edwards, J. (2014). “Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shed- ding”. Journal of Fluid Mechanics, 751:500.
[15] Roesler, B. T. y Epps, B. P. (2018). “Discretization requirements for vortex lattice methods to match unsteady aerodynamics theory”. AIAA Journal, 56(6):2478–2483.
[16] Rohatgi, A. (2020). “Webplotdigitizer: Version 4.3”.
[17] Saffman, P. G. (1992). Vortex dynamics. Cambridge university press.
[18] Valdez, M. F., Preidikman, S., y Larsen, S. E. F. (2017). “Análisis aerodinámico de perfiles con múltiples superficies para control y re- dirección de flujo”. Mecánica Computacional, 35(26):1517–1539.
[19] Wagner, H. (1925). “Über die entstehung des dynamischen auftriebes von tragflügeln”. ZAMM-Journal of Applied Mathematics and Mecha- nics/Zeitschrift für Angewandte Mathematik und Mechanik, 5(1):17– 35.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Facultad de Ciencias Exactas, Físicas y Naturales (Universidad Nacional de Córdoba)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación.
Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).