Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa
DOI:
https://doi.org/10.33044/revem.12396Resumen
En la Parte I estudiamos una axiomática de segmentos, en la que definimos los convexos y estudiamos sus propiedades conjuntistas. Ello nos permitió definir la cápsula convexa para subconjuntos del espacio y demostrar algunas de sus propiedades. En esta Parte II, tomaremos como concepto primitivo el de cápsula convexa que caracterizaremos mediante cuatro axiomas independientes que resultan de propiedades de la cápsula convexa dadas en la Parte I. Los segmentos se definirán a partir de la cápsula convexa y obtendremos como teorema los tres axiomas de la axiomática de segmentos de la Parte I. De esta forma ambos sistemas axiomáticos resultarán equivalentes. Ello permitirá asegurar que toda proposición de la Parte I también puede demostrarse en el sistema axiomático de la Parte II y viceversa. En tal sentido, utilizando la axiomática de cápsula convexa, probaremos los diversos teoremas en este sistema axiomático, prescindiendo de las demostraciones hechas en la primera parte. En un Apéndice, un axioma independiente de los anteriores permitirá estudiar la separación de convexos mediante semiespacios. La numeración de los parágrafos, definiciones, proposiciones y figuras continúa la de la Parte I del trabajo.Descargas
Los datos de descarga aún no están disponibles.
Descargas
Publicado
2015-10-02
Número
Sección
Artículos de Matemática
Licencia
Derechos de autor 2015 Juan Carlos Bressan
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0), que permite:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del proceso de publicación, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Cómo citar
[1]
Bressan, J.C. 2015. Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa. Revista de Educación Matemática. 30, 3 (Oct. 2015). DOI:https://doi.org/10.33044/revem.12396.