Sobre funciones inciertas
DOI:
https://doi.org/10.33044/revem.41052Palabras clave:
Funciones reales de una variable, Continuidad, Polinomios, Espacios vectorialesResumen
En este trabajo, analizamos algunas propiedades básicas de las funciones reales f : R → R que satisfacen la ecuación polinomial X 2+1 = 0 (es decir, tales que f2+idR = 0, donde f2 = f ◦ f). Probamos su existencia, damos una caracterización de tales funciones y mostramos un ejemplo concreto del cual pueden derivarse infinitos ejemplos más. A continuación discutimos algunos aspectos sobre su continuidad. Finalmente, un mecanismo clásico del álgebra lineal nos permite probar que, para cualquier polinomio P ∈ Q[X], existen funciones f : R → R que satisfacen la ecuación polinomial P = 0.
Descargas
Referencias
Apostol, T. (1999). Calculus I. Barcelona: Reverté Ediciones.
Hoffman, K., y Kunze, R. (1971). Álgebra Lineal. México: Prentice Hall Latinoamericana.
Kolmogorov, A., y Fomin, S. (1975). Elementos de la teoría de funciones y del análisis funcional. Moscú: Editorial MIR.
Lang, S. (2002). Algebra. Nueva York: Springer.
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0), que permite:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del proceso de publicación, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).