On uncertain functions

Authors

  • Sebastián Freyre Universidad de Buenos Aires. Departamento de Ciencias Exactas. CBC
  • Juan Sabia Universidad de Buenos Aires. Departamento de Ciencias Exactas. CBC

DOI:

https://doi.org/10.33044/revem.41052

Keywords:

Real univariate functions, Continuity, Polynomials, Vector spaces

Abstract

In this paper, we analize some basic properties of the real functions f : R → R that satisfy the polynomial equation X 2 + 1 = 0 (that is, such that f2 + idR = 0, where f2 = f ◦ f). We prove their existence, give a characterization of such functions and show a concrete example from which infinite other examples can be derived. Next, we discuss some issues about their continuity. Finally, a classic linear algebra mechanism allows us to prove that, for every polynomial P ∈ Q[X], there exist functions f : R → R that satisfy the polynomial equation P = 0.

Downloads

Download data is not yet available.

References

Apostol, T. (1999). Calculus I. Barcelona: Reverté Ediciones.

Hoffman, K., y Kunze, R. (1971). Álgebra Lineal. México: Prentice Hall Latinoamericana.

Kolmogorov, A., y Fomin, S. (1975). Elementos de la teoría de funciones y del análisis funcional. Moscú: Editorial MIR.

Lang, S. (2002). Algebra. Nueva York: Springer.

Downloads

Published

2023-04-27

Issue

Section

Artículos de Matemática

How to Cite

[1]
Freyre, S. and Sabia, J. 2023. On uncertain functions. Revista de Educación Matemática. 38, 1 (Apr. 2023), 10–21. DOI:https://doi.org/10.33044/revem.41052.