SOBRE EL JUEGO SOLITARIO SENKU

Authors

  • Ricardo A. Podestá Universidad Nacional de Córdoba. FAMAF – CONICET. CIEM

DOI:

https://doi.org/10.33044/revem.28174

Keywords:

Peg solitaire, game, finite fields, moves, packages, purges

Abstract

In this article, we deal with the Peg solitaire Senku in Argentina game. We show, using some algebra, that the english version of the game has a solutionn on the center (given by de Bruijn in 1972) and that the french version does not have a solution. From the literature on the topic, we select some interesting solutions , simetric ones and the shortest possible ones.

Downloads

Download data is not yet available.

References

Beasley, J. D. (s.f.). Beasley’s peg solitaire page. Descargado de https://www.jsbeasley.co.uk/pegsol.htm

Beasley, J. D. (1962). Some notes on solitaire. Eureka, 25, 13–18.

Beasley, J. D. (1985). The ins & outs of peg solitaire. Oxford University Press.

Bell, G. (s.f.). George’s peg solitaire page. Descargado de http://recmath.org/pegsolitaire

Bergholt, E. (1912). May 11. The Queen.

Berlekamp, E. R., Conway, J. H., y Guy, R. K. (1982). Winning ways for your mathematical plays (Vol. II). Academic Press.

de Bruijn, N. G. (1972). A solitaire game and its relations to a finite field. Journal of Recreational Mathematics, 5(2), 133–137.

Dudeney, H. E. (1908). April. The Strand Magazine.

Gardner, M. (1991). The unexpected hanging and other mathematical diversions. University Of Chicago Press. (Reimpreso como Knots and Borromean Rings, Reptiles, and Eight Queens, Cambridge University Press, 2014)

Downloads

Published

2020-04-14

Issue

Section

Artículos de Matemática

How to Cite

[1]
Podestá, R.A. 2020. SOBRE EL JUEGO SOLITARIO SENKU. Revista de Educación Matemática. 35, 1 (Apr. 2020), 61–76. DOI:https://doi.org/10.33044/revem.28174.