The mathematics of infectious diseases

Authors

  • Pablo Amster Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática

DOI:

https://doi.org/10.33044/revem.29726

Keywords:

SIR Model, Discrete models, Infection curve, Difference equations

Abstract

This article introduces the main aspects of a discrete version of the SIR model, which is employed to describe the propagation of infectious diseases and has become an unexpected protagonist of the present times. The basic properties that rule the behaviour of the curves of susceptible and infected individuals are
shown, and elementary numerical examples are given. 

Downloads

Download data is not yet available.

References

Bernoulli, D. (1766). Essai d’une nouvelle analyse de la mortalitée causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mém. Math. Phys. Acad. Roy.Sci. Paris. Retrieved from https://gallica.bnf.fr/ark:/12148/bpt6k3558n/f220.image.r=daniel%20bernoulli

Hamer, W. (1906). The milroy lectures on epidemic disease in england—the evidence of variability and persistence of type. Lancet, 1, 733–739.

Kermack, W., & McKendrick, A. (1927). Contributions to the mathematical theory of epidemics i. Proceedings of the Royal Society London A, 115, 700–721.

Martcheva, M. (2015). An introduction to mathematical epidemiology. Springer, US.

Muñoz, I. (2020). Estrategias de control óptimo para contener un brote de ébola en áfrica occidental. Tesis de licenciatura. Depto. de Matemática, FCEyN-UBA. Retrieved from http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2020/

Pedersen, S. (2015). (algunos) modelos matemáticos para (algunas) enfermedades contagiosas: transmisión, infección, tratamiento. Tesis de licenciatura. Depto. de Matemática, FCEyN-UBA. Retrieved from http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2015/

Ross, R. (1910). The prevention of malaria. New York, E.P. Dutton & Company.

Serra, X. (2015). La mortal viruela de luis xv. Un dermatólogo en el museo. Retrieved from

http://xsierrav.blogspot.com/2015/09/la-mortal-viruela-de-luis-xv.html

Weiss, H. (2013). The sir model and the foundations of public health. MATerials MATematics, treball no. 3, 1.

Downloads

Published

2020-07-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Amster, P. 2020. The mathematics of infectious diseases. Revista de Educación Matemática. 35, 2 (Jul. 2020), 5–20. DOI:https://doi.org/10.33044/revem.29726.