Partitioning polygons, from scissors to generalizations

Authors

  • Luis Agustín Cárdenas Pena Universidad de Talca

DOI:

https://doi.org/10.33044/revem.29729

Keywords:

Dissections, Polygons, Golden-ratio, Wallace–Bolyai–Gerwien

Abstract

This article illustrates how a problem posed in the contest “El Número de Oro” might impulse mathematical enthusiasm and induce addressing a more general question in a natural way. Studying the problem culminates on the rediscover of a general theorem with an aesthetically appealing, always keeping the geometric treatment elementary.

Downloads

Download data is not yet available.

References

Hartshorne, R. (2000). Geometry: Euclid and beyond (1. A., korr. Nachdruck 2002. ed.). Springer.

McFarland, A., McFarland, J., Smith, J., y Grattan-Guinness, I. (2014). Alfred tarski: Early work in poland - geometry and teaching. Birkhauser.

Downloads

Published

2020-07-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Cárdenas Pena, L.A. 2020. Partitioning polygons, from scissors to generalizations. Revista de Educación Matemática. 35, 2 (Jul. 2020), 51–69. DOI:https://doi.org/10.33044/revem.29729.