Interpreting graphics: the use of GeoGebra

Authors

  • Marisa Álvarez Universidad Nacional de General Sarmiento
  • Rodolfo Murúa Universidad Pedagógica Nacional / Universidad Nacional de General Sarmiento

DOI:

https://doi.org/10.33044/revem.31160

Keywords:

Registers of representation, instrumental procedures, GeoGebra

Abstract

Problems in which students have to interpret and “read” information from a graph of a function (or a relationship between two variables), given a situation in an extra-mathematical context, are well known. Questions to find the corresponding value of a certain abscissa (or ordinate), in which sometimes the in- formation can be deduced exactly and others approximately, are usually included. It is also possible to analyze variations or issues related to increasing or decreasing intervals of a function. Now, what happens if the graph is presented in GeoGebra? Are the procedures (or techniques) for deducing information from it the same as working with pencil and paper? In this article, we will anticipate different types of procedures that could be implemented by students. Some of them are closer to the work done with pencil and paper and others, in our opinion,
are extremely novel. Besides, we may ask ourselves what are the contributions, in terms of mathematical knowledge, that the software provides when working with "dynamic" graphs. It should be clarified that any potentiality of the software cannot be separated from the teaching intention.

Downloads

Download data is not yet available.

References

Arcavi, A., & Hadas. (2000). Computer medialted learning: an example of an approach. International Journal of Computers for Mathematical Learning, 5, 25-45. doi: https://doi.org/10.1023/A:1009841817245

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274. doi: https://doi.org/10.1023/A:1022103903080

Artigue, M. (2007). Tecnología y enseñanza de las matemáticas: desarrollo y aportes de la aproximación instrumental. In E. Mancera & C. Pérez (Eds.), Historia y Prospectiva de la Educación Matemática, Memorias de la XII Conferencia Interamericana de Educación Matemática (p. 9-21). México: Edebé Ediciones Internacionales, S. A.

Borsani, V., Cedrón, M., Cicala, R., Di Rico, E., Duarte, B., & Sessa, C. (2018). Modelización de relaciones entre magnitudes geométricas en un entorno enriquecido con TICs: actividades para la escuela secundaria, diseñadas en un grupo colaborativo. Yupana, 10, 56-69. doi: https://doi.org/10.14409/yu.v0i10.7697

Chevallard, Y., Bosch, M., & Gascón, J. (1997). Estudiar matemáticas: el eslabón perdido entre la enseñanza y el aprendizaje. Barcelona: ICE-HORSORI.

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5(1), 37-65.

Downloads

Published

2020-12-05

Issue

Section

Aportes para la Enseñanza de la Matemática

How to Cite

[1]
Álvarez, M. and Murúa, R. 2020. Interpreting graphics: the use of GeoGebra. Revista de Educación Matemática. 35, 3 (Dec. 2020), 7–19. DOI:https://doi.org/10.33044/revem.31160.