An enigma called Grigori Perleman

Authors

  • Jorge Lauret Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación - CONICET. CIEM

DOI:

https://doi.org/10.33044/revem.36051

Keywords:

Perelman, Poincaré conjecture, Topology

Abstract

The famous Poincaré Conjecture (1904), purely topological, was proved by the Russian mathematician Grigori Perelman in 2002 using geometry and differential equations. This paper is about the mathematics, the mathematicians, the prizes, the millions ofdollars and all the drama surrounding such a proof

Downloads

Download data is not yet available.

References

B. Kleiner and J. Lott. (2008). Notes on Perelman’s papers. Geom. Topol.,12,2587–2855.

G. Perelman. (2002). The entropy formula for the Ricci flow and its geometric applications. Descargado dearXiv:math.DG/0211159

G. Perelman. (2003a). Ricci flow with surgery on three-manifolds. Descargado dearXiv:math.DG/0303109

G. Perelman. (2003b). Finite extinction time for the solutions to the Ricci flow on certain three manifolds. Descargado dearXiv:math.DG/0307245

H-D Cao and X-P Zhu. (2006). A Complete Proof of the Poincaré and Geometrization Conjectures - Application of the Hamilton-Perelman Theory of the Ricci Flow. Asian J. Math.,10, 165-492.

J. Morgan and G. Tian. (2007). Ricci flow and the Poincaré conjecture. Clay Math. Monographs 3, Amer. Math. Soc.

Downloads

Published

2021-12-14

Issue

Section

Artículos de Matemática

How to Cite

[1]
Lauret, J. 2021. An enigma called Grigori Perleman. Revista de Educación Matemática. 36, 3 (Dec. 2021), 29–38. DOI:https://doi.org/10.33044/revem.36051.