Tessellating the plane with convex polygons

Authors

  • Ricardo A. Podestá Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación

DOI:

https://doi.org/10.33044/revem.37469

Keywords:

Tilings, Plane, convex polygons, regular polygons

Abstract

In this article we give a panoramic view over the classification of tilings of the euclidean plane by using copies of a single convex polygon (convex monohedral tilings). First, we show that a tiling with regular poligons is only possible by using triangles, squares and regular hexagons, a fact well known by the ancient greeks, and that if the polygon is not convex then there are infinite possible tilings. In this way, we focus on convex tilings withnon-regular polygons. First, we show that any triangle or quadrilateral tiles the plane. Then, we show that a polygon that tiles the plane must have at most 6 edges. Next, we consider the case of hexagons and show that there are only 3 different families of convex hexagons tiling the plane. Finally, we deal with pentagons, whose classification is more involved, and could be completed recently in 2017. We will show that there are 15 different families of pentagons tiling the plane.

Downloads

Download data is not yet available.

References

Bagina, O. (2004). Tiling the plane with congruent equilateral convex pentagons. J. Combin. Theory. Ser. A,105, 221-232.

Euler, L. (1758). lementa doctrinae solidorum. Novi Commentarii AcademiaeScientiarum Petropolitanae, 109-140.

Gardner, M. (1975). Mathematical Games. Scientific American,233(1), 112-119.

Grünbaum, B., y Shephard, G. C. (1977). The eighty-one types of isohedral tilings in the plane. Math. Proc. Cambridge Philos. Soc.,82(2), 177-196.

Hirschhorn, M. (1976). The 1976 Summer Science School. Tessellations with convex equilateral pentagons. Parabola,13, 2-5.

Hirschhorn, M. (1977). More tessellations with convex equilateral pentagons. Parabola,13, 20-22.

Hirschhorn, M., y Hunt, D. (1985). Equilateral Convex Pentagons Which Tile the Plane. J. Combin. Theory Ser. A,39, 1-18.

Kershner, R. B. (1968). On paving the plane.American Mathematical Monthly,75,839-844.Kershner, R. B. (1969). On paving the plane.APL Technical Digest,75(8), 4-10.

Klaassen, B. (2016). Rotationally symmetric tilings with convex pentagons andhexagons. Elemente der Mathematik,71(4), 137-144.

Mann, C., McLoud-Mann, J., y Von Derau, D. (2015). Convex pentagons thatadmiti-block transitive tilings. Geometriae Dedicata,194, 141-167.

Niven, I. (1978). Convex polygons that cannot tile the plane.Amer. Math. Monthly,85(4), 785-792.

Rao, M. (2017). Exhaustive search of convex pentagons which tile the plane. arXiv:1708.00274..

Reinhardt, K. (1918). Uber die Zerlegung der Ebene in Polygone. Dissertation, Universität Frankfurt.

Schattschneider, D. (1978). Tiling the plane with congruent pentagons. Mathematics Magazine, 51, 29-44.

Stein, R. (1985). A new pentagon tiler. Mathematics Magazine, 58, 308.

Downloads

Published

2022-04-29

Issue

Section

Artículos de Matemática

How to Cite

[1]
Podestá, R.A. 2022. Tessellating the plane with convex polygons. Revista de Educación Matemática. 37, 1 (Apr. 2022), 31–60. DOI:https://doi.org/10.33044/revem.37469.