The Inverse of a cubic function

Authors

  • Marilina Carena Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Químicas
  • Ricardo Toledano Universidad Nacional del Litoral. Facultad de Ingenieria Química

DOI:

https://doi.org/10.33044/revem.46291

Keywords:

Inverse function, Roots, Cubic polynomial function

Abstract

Motivated by a question asked by an undergraduate student we determine when the cubic function f(x) = x3 + ax, with a being a real number, is bijective in its domain. For this purpose we use some basic results from calculus and by using a formula for the solution of the cubic equation x3 + mx = n found by Cardano in the 16th century, we find an explicit expression for the inverse function of f

Downloads

Download data is not yet available.

References

Klein, F. (1913). Lectures on the icosahedron and the solution of equations of the fifth degree. Kegan Paul. London.

Spivak, M. (1998). Calculus. Cálculo infinitesimal. Ed. Reverte.

Tignol, J.-P. (2016). Galois’ theory of algebraic equations (Second ed.). World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.

Downloads

Published

2024-08-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Carena, M. and Toledano, R. 2024. The Inverse of a cubic function. Revista de Educación Matemática. 39, 2 (Aug. 2024), 5–17. DOI:https://doi.org/10.33044/revem.46291.