The unique properties of 73

Authors

  • Ricardo A. Podestá Universidad Nacional de Córdoba. FAMAF – CONICET. CIEM

DOI:

https://doi.org/10.33044/revem.46298

Keywords:

Prime numbers, Reverse numbers, Sheldon conjecture

Abstract

First we present several properties of the prime 73 and its reverse 37. Next, we introduce the Sheldon conjecture stating that 73 is the only prime satisfying two specific properties. Later, we give an idea of the proof of the conjecture given by Pomerance and Spicer. Finally, we consider Sheldon numbers defined on integer sequences

Downloads

Download data is not yet available.

References

Bach, E., y Shallit, J. O. (1996). Algorithmic Number Theory 1 (Vol. 233). MIT Press.

Byrnes, J., Spicer, C., y Turnquist, A. (s.f.). The Sheldon conjecture. Math. Horiz., 23(2).

Dusart, P. (1999). The k-th prime is greater than k(ln k + ln(ln k) − 1) for k ≥ 2. Mathematics of Computation, 68(225), 411–415.

Gleason, A. M. (1988). Angle Trisection, the Heptagon, and the Triskaidecagon. The American Mathematical Monthly, 95(3), 185–194.

Pomerance, C., y Spicer, C. (2019). Proof of the Sheldon conjecture. Am. Math. Mon., 126(8), 688–698

Rosser, J. B., y Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64–945.

Downloads

Published

2024-08-30

Issue

Section

Artículos de Matemática

How to Cite

[1]
Podestá, R.A. 2024. The unique properties of 73. Revista de Educación Matemática. 39, 2 (Aug. 2024), 37–73. DOI:https://doi.org/10.33044/revem.46298.