Trends in diet quality in Argentinian homes between 1996-2018, differences according to region, home type and income level.

Authors

  • María Elisa Zapata Centro de Estudios sobre Nutrición Infantil (CESNI). Buenos Aires, Argentina.
  • Ignacio Agustín Mendez Instituto de Desarrollo e Investigaciones Pediátricas (IDIP); Hospital de Niños Sor María Ludovica; Buenos Aires; Argentina
  • María Victoria Fassano Centro de Matemática de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Comisión de Investigaciones Científicas

DOI:

https://doi.org/10.31052/1853.1180.v2.n28.37565

Keywords:

consumo de alimentos., consumo por grupo de alimentos, Factores Socioeconómicos, Argentina, hábitos alimenticios

Abstract

Introduction: Food is a health determinant, bad quality diets represent one of the main risk factors of morbidity and mortality. 

Objective: The objective of this work was to evaluate the tendency in food quality in the last two decades and its relationship with sociodemographic characteristics in Argentinian homes in the last period.

Methods: Observational cross-sectional study; data collected for the National Survey of Home Expenditure in the periods 1996-97, 2004-05, 2012-13 and 2017-18 were analyzed.  The total score and the scores for each component of Argentinian Index of Diet Quality (ICDAr, according to Spanish acronym) were estimated and a bivariate analysis was done to evaluate differences according to region, home type and income level.

Results: A significant loss in food quality is observed in Argentinian homes throughout time, especially because of the greater participation of the optional consumption food group.  ICDAr went from 58.8±0.1 points in 1996-97 to 52.9±0.1 (p <0.001) in 2017-18, and only 1.7% and 0.8% of the homes reached a score higher than 80 points (p <0.001), respectively. In general, homes in Patagonia and the Metropolitan area, single-owner homes and homes with higher incomes showed worse results.

Conclusions: These findings show necessary aspects to be improved regarding eating habits in Argentinian population and contribute to the planning of policies and actions towards better food quality.

Downloads

Download data is not yet available.

References

Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019 May 11; 393(10184):1958-1972.

Schwingshackl L, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Schwedhelm C, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(5):363-75.

Schwingshackl L, Schwedhelm C, Hoffmann G, Knuppel S, Iqbal K, Andriolo V, et al. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. AdvNutr. 2017;8(6):793-803.

Schwingshackl L, Schwedhelm C, Hoffmann G, Knuppel S, Laure Preterre A, Iqbal K, et al. Food groups and risk of colorectal cancer. Int J Cancer. 2018;142(9):1748-58.

Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J ClinNutr. 2017;105(6):1462-73.

Institute for Health Metrics and Evaluation. GBD Compare | Viz Hub [internet]. Seattle, Washington: University of Washington. [consultado 1 Sept 2021]. Disponible en: http://ihmeuw.org/5k2m

Alkerwi A. Diet quality concept. Nutrition. 2014;30(6):613-618.

Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Currentopinion in lipidology. 2002;13(1):3-9

Panagiotakos D. A priori versus a posteriori methods in dietary pattern analysis: a review in nutrition epidemiology. NutrBul. 2008 33, 311–315

Ocké MC. Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. ProcNutr Soc. 2013; 72:191–9.

Kant AK. Indexes of overall diet quality: a review. J Am Diet Assoc. 1996 Aug; 96(8):785-91.

Waijers PMCM, Feskens EJM, Ocke MC. A critical review of predefined diet quality scores. Br J Nutr. 2007; 97(2):219-31.

Wirt A, Collins CE. Diet quality--what is it and does it matter? PublicHealthNutr. 2009 Dec;12(12):2473-92.

Gil Á, Martinez de Victoria E, Olza J. Indicators for the evaluation of diet quality. NutrHosp. 2015; 31 Suppl 3:128–144.

Willett WC, McCullough ML. Dietary pattern analysis for the evaluation of dietary guidelines. Asia Pac J Clin Nutr. 2008; 17Suppl 1:75-8.

Mendez, IA. Desarrollo y validación de un índice de calidad de dieta basado en las recomendaciones de las Guías Alimentarias para la Población Argentina [Tesis de maestría]. Universidad Nacional de La Plata; 2021.

Ministerio de Salud de la Nación. Guías Alimentarias para la Población Argentina. Buenos Aires, 2016.

Zapata ME, Moratal Ibáñez L, López LB. Calidad de la dieta según el Índice de Alimentación Saludable. Análisis en la población adulta de la ciudad de Rosario, Argentina. DIAETA. 2020;38(170):8-15

Gómez G, Fisberg RM, Nogueira Previdelli Á, et al. Diet Quality and Diet Diversity in Eight Latin American Countries: Results from the Latin American Study of Nutrition and Health (ELANS). Nutrients. 2019; 11(7):1605.

Fiedler JL, Lividini K, Bermudez OI, Smitz MF. Household Consumption and Expenditures Surveys (HCES): a primer for food and nutrition analysts in low- and middle-income countries. Food Nutr Bull. 2012;33(3 Suppl):S170-84.

Fiedler JL, Smitz MF, Dupriez O, Friedman J. Household income and expenditure surveys: a tool for accelerating the development of evidence-based fortification programs. Food Nutr Bull. 2008;29(4):306-19.

Naska A, Vasdekis VG, Trichopoulou A. A preliminary assessment of the use of household budget survey data for the prediction of individual food consumption. Public Health Nutr. 2001;4(5B):1159-65.

Zapata, ME., Rovirosa, A., & Carmuega, E. (2019). Urbano y rural: diferencias en la alimentación de los hogares argentinos según nivel de ingreso y área de residencia. SALUD COLECTIVA, 15.

Ministerio de Salud de la Nación, Dirección Nacional de Salud Materno Infantil. Software SARA. Sistema de Análisis y Registro de Alimentos Versión 1.2.22 ed2007.

López L, Suárez M. Alimentación Saludable. Guía práctica para su realización. S.A H, editor. Buenos Aires 2011.

Ministerio de Salud de la Nación. Manual para la aplicación de las guías alimentarias para la población argentina. Buenos Aires, 2018.

Bowman S, Lino M, Gerrior S, Basiotis P. The Healthy Eating Index: 1994–96. . In: US Department of Agriculture Cf, CNPP-5. NPaP, editors. 1998.

Willet W. Nutritional epidemiology. Oxford University Press. 1998.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

T. Lumley (2020) "survey: analysis of complex survey samples". R packageversion 4.0.

Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A Global Review of Food-Based Dietary Guidelines. AdvNutr. 2019 Jul 1;10(4):590-605.

WHO, FAO. Preparation and use of food-based dietary guidelines. Joint FAO/WHO Consultation (WHO TechnicalReport Series 880). 1996.

Molina V. El estado de las Guías Alimentarias Basadas en Alimentos en América Latina y el Caribe. 21 años después de la Conferencia Internacional Sobre Nutrición. División de Nutrición FAO. Roma; 2014.

Zapata ME, Rovirosa A, Carmuega E. Evaluación de las Guías Alimentarias para la Población Argentina, inequidad según nivel de ingreso y por región. Revista Argentina de Salud Pública 2021 (en prensa).

Wilson MM, Reedy J, Krebs-Smith SM. American Diet Quality: Where It Is, Where It Is Heading, and What It Could Be. J AcadNutr Diet. 2016 Feb;116(2):302-310.e1.

Instituto Nacional de Estadística y Censos (INDEC) - Secretaría de Gobierno de Salud de la Nación. 4° Encuesta Nacional de Factores de Riesgo. Resultados definitivos. Ciudad Autónoma de Buenos Aires, 2019.

Zapata ME, Rovirosa A. La alimentación en la Argentina. Una mirada desde distintas aproximaciones. CAPA I. Disponibilidad de alimentos y nutrientes a nivel país. 2021. Disponible en https://cesni-biblioteca.org/archivos/La-alimentacion-en-la-Argentina.pdf

Zapata ME, Rovirosa A. La alimentación en la Argentina. Una mirada desde distintas aproximaciones. CAPA II. Consumo aparente de alimentos y nutrientes a nivel hogar. 2021. Disponible en https://cesni-biblioteca.org/la-alimentacion-en-la-argentina-capa2/

Tumas N, RodriguezJunyent C, Aballay LR, Scruzzi GF, Pou SA. Nutrition transition profiles and obesity burden in Argentina. PublicHealthNutrition. 2019:1-11.

Popkin BM, Gordon-Larsen P. The nutrition transition: worldwide obesity dynamics and their determinants. Int J ObesRelatMetabDisord. 2004;28Suppl 3:S2-9.

Drake I, AbeyáGilardon E, Mangialavori G, Biglieri A. Descripción del consumo de nutrientes según el nivel de procesamiento industrial de los alimentos. Encuesta Nacional de Nutrición y Salud 2005. Arch Argent Pediatr. 2018 Oct 1;116(5):345-352.

Ministerio de Salud y Desarrollo Social de la Nación. 2° Encuesta Nacional de Nutrición y Salud. Resumen ejecutivo. Argentina 2019.

Zapata ME, Rovirosa A, Carmuega E. Evaluación de las Guías Alimentarias para la Población Argentina: inequidad según nivel de ingreso y por región. Rev Argent Salud Pública. 2021;14:e68.

Boletín Oficial de la República Argentina. Ley 26.905. Promoción de la Reducción del Consumo de Sodio en la Población. 2013. [citado 31 Ago 2021] Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/10370392/20160703

Resolución Conjunta Resolución Conjunta 3/2021. Buenos Aires. Secretaría de Políticas, Regulación e Institutos y Secretaría de Agricultura, Ganadería y Pesca. 2021. [citado 19 Nov 2021]. Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/239985/20210121

Boletín Oficial de la República Argentina. Ley Ley 27.642. PROMOCIÓN DE LA ALIMENTACIÓN SALUDABLE. [citado 19 Nov 2021] Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/252728/20211112

Sununtnasuka C, JL. F. Can household-based food consumption surveys be used to make inferences about nutrient intakes and inadequacies? A Bangladesh case study. FoodPolicy. 2017; 72:121-31.

Jolliffe D, Lanjouw P, Chen S, Kraay A, Meyer C, Negre M ea. A Measured Approach to Ending Poverty and Boosting Shared Prosperity: Concepts, Data, and the Twin Goals. TheWorld Bank. 2014.

Ferreira FHG, Chen S, Narayan A, Sangraula P, Dabalen AL, Serajuddin U ea. A Global Count of the Extreme Poor in 2012: Data Issues, Methodology and Initial Results. PolicyResearchWorkingPaper. Washington, DC: TheWorld Bank. 2015.

Published

2023-01-05 — Updated on 2023-01-06

Issue

Section

Scientific Articles

How to Cite

1.
Trends in diet quality in Argentinian homes between 1996-2018, differences according to region, home type and income level. . Rev. Salud Pública (Córdoba) [Internet]. 2023 Jan. 6 [cited 2024 Nov. 22];28(2). Available from: https://revistas.psi.unc.edu.ar/index.php/RSD/article/view/37565

Most read articles by the same author(s)