Persistência de IgM SARS-COV-2 em pacientes que completaram quarentena para COVID-19, em Arequipa, Peru
DOI:
https://doi.org/10.31052/1853.1180.v29.n1.32051Palavras-chave:
Infecções por coronavírus, sorologia, imunoglobulina M, reações de falso positivo, doenças autoimunes, fator reumatóideResumo
Objetivo: Analisar as características clínicas de pacientes convalescentes para COVID-19, que apresentam persistência de IgM.
Material e métodos: Estudo analítico. Foram avaliados 614 pacientes, do dia 21 ao 175 após o início dos sintomas. Houve 19 casos com IgM positivo (3,1%). Um grupo controle foi utilizado para comparar as variáveis clínicas, agrupando-as por categorias e aplicando o teste Xi-quadrado ou exato de Fisher (p<0,05).
Resultados: A partir do final da quarentena (dia 21), foram registrados casos positivos de IgM, atingindo o maior número no intervalo de 44-65 dias (42,1%). Evidenciou-se associação entre a presença de IgM positiva e doenças autoimunes (p=0,02).
Conclusões: Há persistência de positividade para IgM SARS-CoV-2 até 175 dias após o início dos sintomas, principalmente associada à reação cruzada com doenças autoimunes. Fornecem-se informações úteis para esclarecer as causas e auxiliar no tratamento médico.
Palavras-chave: infecções por coronavírus; sorologia; imunoglobulina M, reações falso-positivas; doenças autoimunes.
Downloads
Referências
Zhang Z, Xiao K, Zhang X, Roy A, Shen Y. Emergence of SARS-like coronavirus in China: an update. J Infect 2020, 80 (5): e28-e29. doi: 10.1016/j.jinf.2020.03.010
Mercado M, Malagón-Rojas J, Delgado G, Rubio V, Muñoz L, Parra E, et al. Evaluation of nine serological rapid tests for the detection of SARS-CoV-2. Rev Panam Salud Publica. 2020; 44: e149. doi: 10.26633/RPSP.2020.149
Loeffelholz M, Yi-Wei Tang Y. Laboratory diagnosis of emerging human coronavirus infections – the state of the art, Emerging Microbes & Infections, 2020. 9: (1): 747-756. doi: 10.1080/22221751.2020.1745095
Cañete P, Vinuesa C, COVID-19 makes B cells forget, but T cells remember, Cell, 2020, S0092-8674 (20): 31154-5. doi: 10.1016/j.cell.2020.09.013.
Barnes C, West A, Huey-Tubman K, Hoffmann M, Sharaf N, Hoffman P, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies, Cell, 2020, S0092-8674 (20): 30757-1. doi: 10.1016/j.cell.2020.06.025.
Isho B, Abe K, Zuo M, Jamal A, Rathod B, Wang J, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020. 5 (52): eabe5511. doi: 10.1126/sciimmunol.abe5511
Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020; 38 (5): 515-518. doi: 10.1038/d41587-020-00010-2.
Wang Q, Du Q, Guo B, Mu D, Lu X, Ma Q, et al. A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzymelinked immunosorbent assays. J Clin Microbiol. 2020; 58: e00375-20. doi: 10.1128/JCM.00375-20
Hernández-Pérez J. Martín-González E, Pino M, Strengths and weakness of diagnostic tests of SARS CoV-2infection. Med Clin (Barc). 2020; 155 (10): 463–469. doi: 10.1016/j.medcli.2020.05.019
Stadlbauer D, Amanat F, Chromikova V, Teo C, McMahon M, Simon V. et al. SARS-CoV-2 Seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr Protoc Microbiol, 2020; 57 (1): e100. doi: 10.1002/cpmc.100
Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Antibody responses to SARS-CoV-2 in patients of novel coronavirus. Clinical Infectious Diseases, 71 (16): 2027–2034. doi: 10.1093/cid/ciaa344
Lozada I, Nuñez C. COVID-19: respuesta inmune y perspectivas terapéuticas. Rev. perú. med. exp. salud pública. 2020, 37 (2): 312-319. doi: 10.17843/rpmesp.2020.372.5490
Mikuls T, Johnson S, Fraenkel L, Arasaratnam R, Baden L, Bermas B, et al. American College of Rheumatology guidance for the management of adult patients with rheumatic disease during the COVID-19 pandemic, Arthritis Rheumatol. 2020; 72 (8): 1241-1251. doi: 10.1002/art.41301
Renzo Reynaldo GM. Current Clinical-Epidemiological Profile of Patients with COVID-19 in Reference Hospital of Perú. American J Epidemiol Public Health. 2020; 4 (3): 081-085. doi: 10.37871/ajeph.id35
Nath H, Mallick A, Roy S, Sukla S, Basu K, De A, et al. Dengue antibodies can cross-react with SARS-CoV-2 and vice versa-Antibody detection kits can give false-positive results for both viruses in regions where both COVID-19 and Dengue co-exist. medRxiv 2020 (Preprint): 20145797. doi: 10.1101/2020.07.03.20145797
Vinyé M, Bausà R, Corominasa H. Cross-reactions between rheumatoid factor and IgM SARS-CoV-2. Med Clin (Barc). 2020; 155 (9): 414–420. doi: 10.1016/j.medcli.2020.07.008
Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020. 324 (6): 603-605. doi:10.1001/jama.2020.12603
Jiang M, Li Y, Han M, Wang Z, Zhang Y. Recurrent PCR positivity after hospital discharge of people with coronavirus disease 2019 (COVID-19). Journal of Infection, 2020. 81: 162–164. doi: 10.1016/j.jinf.2020.03.024
Stavem K, Ghanima W, Olsen K, Gilboe H, Einvik G. Persistent symptoms 1.5–6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax, 2020; 0: 1–3 (Epub ahead of print). doi: 10.1136/thoraxjnl-2020-216377
Mo H, Zeng G, Ren X, Li H, Ke Ch, Tan Y. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology, 2006, 11 (1): 49–53. doi: 10.1111/j.1440-1843.2006.00783.x
To K, Tsang O, Leung W, Tam A, Wu T, Lung D, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020; 20 (5): 565-574. doi:10.1016/S1473-3099(20)30196-1
Patel R, Babady E, Theel E, Pinsky B, St. George K, Tara C. Smith T, Bertuzzi S. Report from the American Society for Microbiology COVID-19 international summit, 23 March 2020: value of diagnostic testing for SARS-CoV-2/COVID-19. mBio 2020; 11 (2): e00722-20. Doi: 10.1128/mBio.00722-20.
Lou B, Li T, Zheng SF, Su Y, Li Z, Liu W, et al. Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. Eur Respir J. 2020: 2000763 [Epub ahead of print]. doi: 10.1183/13993003.00763-2020
Gussin H, Russo K, Teodorescu M. Effect of circulating immune complexes on the binding of rheumatoid factor to histones. Ann Rheum Dis 2000; 59 (5): 351–358. doi.org/10.1136/ard.59.5.351
Rojko J, Evans M, Price S, Han B, Waine G, DeWitte M, et al. Formation, Clearance, Deposition, Pathogenicity, and Identification of Biopharmaceutical-related Immune Complexes: Review and Case Studies. Toxicologic Pathology, 42: 725-764, 2014. doi: 10.1177/0192623314526475
Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann R. Plasma Half-life Extension of Small Recombinant Antibodies by Fusion to Immunoglobulin-binding Domains. The Journal of Biological Chemistry, 2011, 287 (7): 4462-4469. doi: 10.1074/jbc.m111.311522
Haberman R, Axelrad J, Chen A, Castillo R, Yan D, Izmirly P, et al. Covid-19 in Immune-Mediated Inflammatory Diseases. Case Series from New York. Engl J Med, 2020; 383: 85-88. doi: 10.1056/NEJMc2009567
Zhang L, Shen F, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis, 2020. 71 (15): 882-883. doi: 10.1093/cid/ciaa112.
Moderbacher C, Ramirez S, Dan J, Grifoni A, Hastie K, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 2020, S0092-8674 (20): 31235-6. doi: 10.1016/j.cell.2020.09.038.
Liu W, Liu L, Kou G, Zheng Y, Ding Y, Ni W, et al. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. J Clin Microbiol. 2020, 58 (6): e00461-20. doi: 10.1128/jcm.00461-20.
Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020. 584: 115–119. doi: 10.1038/s41586-020-2380-z
Bosch A, Biesbroek G, Trzcinski K, Sanders E, Bogaert D. Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathogens, 2013. 9 (1): e1003057. doi: 10.1371/journal.ppat.1003057
Moscola J, Sembajwe G, Jarrett M, Farber B, Chang T, McGinn T, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the NewYork City Area. 2020. JAMA. 2020; 324 (9): 893-895. doi:10.1001/jama.2020.14765
Carabaña Morales J. Datos de encuesta para estimar la prevalencia de COVID-19. Un estudio piloto en Madrid capital. Rev Esp Salud Pública. 2020; 94: 17 de noviembre e202011159
Muñoz L, Pífano M, Bolzán A, Varela T, Comes Y, Specogna M, et al. Vigilancia y Seroprevalencia: Evaluación de anticuerpos IgG para SARS-Cov2 mediante ELISA en el barrio popular Villa Azul, Quilmes, Provincia de Buenos Aires, Argentina. Scielo (preprints). doi: 10.1590/SciELOPreprints.1147
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Escuela de Salud Pública y Ambiente. Facultad de Ciencias Médicas. Universidad Nacional de Córdoba
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional. que permite copiar, distribuir, exhibir e interpretar la obra siempre que no se haga con fines comerciales.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) luego del proceso de publicación. (Véase El efecto del acceso abierto).