Citrullus lanatus: un nuevo hospedante natural del Groundnut ringspot orthotospovirus en Argentina

Contenido principal del artículo

Elizabeth Pozzi
C. E. Luciani
M. Giovanni Celli
V. C. Conci
M. C. Perotto

Resumen

Los orthotospovirus causan graves daños económicos, siendo una limitación importante para la producción y la calidad en distintos cultivos. Los objetivos de este trabajo fueron identificar el agente causal de los síntomas observados en sandía en lotes de producción de Santiago de Estero y analizar su filogenia. Se realizaron muestreos en lotes de producción de sandía (Citrullus lanatus) durante la campaña 2017/2018 en la provincia de Santiago del Estero. Los resultados de este trabajo mostraron en las muestras de sandía la presencia de viriones característicos del género Orthotospovirus, además fueron positivas a pruebas serológicas y moleculares con reactivos específicos (DAS-ELISA y RTPCR) confirmando la presencia del Groundnut ringspot orthotospovirus (GRSV). Los fragmentos genómicos fueron amplificados, secuenciados y depositados en GenBank, acceso Nº MK680832 y MK680833. El análisis filogenético de las secuencias parciales de nucleótidos de la proteína N mostró que los aislamientos de GRSV provenientes de Argentina (hospedante sandía) fueron agrupados con alto valor de confianza. Estas secuencias se ubicaron en un clúster formado por secuencias del continente americano que se separaron de las de origen africano. Este trabajo constituye el primer reporte de la presencia del GRSV en cultivo de sandía (Citrullus lanatus) en Argentina.

Detalles del artículo

Cómo citar
Citrullus lanatus: un nuevo hospedante natural del Groundnut ringspot orthotospovirus en Argentina. (2021). AgriScientia, 38(1), 71-78. https://doi.org/10.31047/1668.298x.v38.n1.26732
Sección
Artículos

Cómo citar

Citrullus lanatus: un nuevo hospedante natural del Groundnut ringspot orthotospovirus en Argentina. (2021). AgriScientia, 38(1), 71-78. https://doi.org/10.31047/1668.298x.v38.n1.26732

Referencias

Bag, S., Mitter, N., Eid, S. y Pappu, H. R. (2012). Complementation between Two Tospoviruses Facilitates the Systemic Movement of a Plant Virus Silencing Suppressor in an Otherwise Restrictive Host. PLoS ONE, 7 (10), e44803. DOI: https://doi.org/10.1371/journal.pone.0044803

Bezerra, I. C., Resende, R. O., Pozzer, L., Nagata, T., Kormelink, R. y De Avila, A. C. (1999). Increase of tospoviral diversity in Brazil with the identification of two new Tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology,89 (9), 823-830. DOI: https://doi.org/10.1094/phyto.1999.89.9.823

Basic Local Alignment Search Tool. [Software]. Maryland, EE.UU.: U.S. National Libarary of Medicine. National Center for Biotechnology Information. https://blast.

ncbi.nlm.nih.gov/Blast.cgi.

Boari, A. J., Maciel-Zambolim, E., Lau, D. D., Lima, G. S. A., Kitajima, E. W., Brommonschenkel, S. S. H. y Zerbini, F. M. (2002). Detection and partial

characterization of an isolate of Groundnut ringspot virus in Solanum sessiliflorum. Fitopatologia Brasileira, 27 (3), 249–253. DOI: https://doi.org/10.1590/S0100-41582002000300002

Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga, V., Falk, B. W. y Turina, M. (2009). A new Tospovirus sp. in cucurbit crops in Mexico. Plant Disease, 93 (3), 467-474. DOI: https://doi.org/10.1094/PDIS-93-5-0467

Clark, M. F. y Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of

General Virology,34 (3), 475-483. DOI: https://doi.org/10.1099/0022-1317-34-3-475

de Avila, A. C., de Haan, P., Kormelink, R., Resende, R. O., Goldbach, R. W. y Peters, D. (1993). Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. Journal of General Virology, 74 (2), 153–159. DOI: https://doi.org/10.1099/0022-1317-74-2-153

de Breuil, S., Abad, J. A., Nome, C. F., Giolitti, F. J., Lambertini, P. L. y Lenardon, S. (2007). Groundnut ringspot virus: an emerging tospovirus inducing disease in peanut crops. Journal of Phytopathology,155 (2), 251–254. DOI: https://doi.org/10.1111/j.1439-0434.2007.01221.x

Dewey, R. A., Semorile, L.C. y Grau, O. (1996). Detection of Tospovirus species by RT-PCR of the N-gene and restriction enzyme digestions of the products. Journal of Virological Methods, 56, 19–26. DOI: https://doi.org/10.1016/0166-0934(95)01896-4

Gambino, G., Perrone, I. y Gribaudo, I. (2008). A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19 (6), 520-525. DOI: https://doi.org/10.1002/pca.1078

German, T., Ullman, D. y Moyer, J. (1992). Tospoviruses: Diagnosis, Molecular Biology, Phylogeny, and Vector Relationships. Annual Review of Phytopathology, 30, 315–348. DOI: https://doi.org/10.1146/annurev.py.30.090192.001531

Goldbach, R. y Kuo, G. (1996). Introduction. Acta Horticulturae, 431, 21-26. DOI: https://doi.org/10.17660/ActaHortic.1996.431.1

Gracia, O. y Feldman, J. M. (1986). Virus identificados en cultivos de cucurbitáceas. IDIA 445-448, 1-6.

Holkar, S. K., Mandal, B., Reddy, M. K. y Jain, R. K. (2019). Watermelon bud necrosis orthotospovirus. An emerging constraint in the Indian subcontinent: An overview. Crop Protection, 117, 52-62. DO69+I: https://doi.org/10.1016/j.cropro.2018.11.005

Jain, R. K., Pappu, H. R., Pappu, S. S., Reddy, M. K. y Vani, A. (1998). Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Archives of Virology, 143, 1637-1644. DOI: https://doi.org/10.1007/s007050050405

Jones, D. R. (2005). Plant viruses transmitted by thrips. European Journal of Plant Pathology, 113, 119–157. DOI: https://doi.org/10.1007/s10658-005-2334-1

Kato, K., Handa, K. y Kameya-Iwaki, M. (2000). Melon yellow spot virus: a distinct species of the genus Tospovirus isolated from melon. Phytopathology, 90 (4), 422-426. DOI: https://doi.org/10.1094/PHYTO.2000.90.4.422

Kumar, S., Stecher, G. y Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. (version 7.0) [Software]. Recuperado de: https://www.megasoftware.net/

Leão, E., Spadotti, D., Rocha, K., Pantoja, K., Rezende, J., Pavan, M., y Krause Sakate, R. (2015). Citrullus lanatus is a new natural host of Groundnut ringspot virus in Brazil. Journal of Phytopathology, 163 (11-12), 1014-1018. DOI: https://doi.org/10.1111/jph.12327

Lecoq, H. y Katis, N. (2014). Control of cucurbit viruses. Advances in Virus Research, 90, 255-296. DOI: https://doi.org/10.1016/B978-0-12-801246-8.00005-6

Loebenstein, G. y Lecoq, H. (Eds.) (2012). Viruses and virus diseases of vegetables in the Mediterranean basin. (Vol. 84). Estados Unidos: Academic Press.

Maes, P., Adkins, S., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., Bente, D. A., …y Kuhn, J. H. (2019). Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 164, 927-941. DOI: https://doi.org/10.1007/s00705-018-04127-3

Michelotto, M., Carrega, W., Lamana, L., de Souza, T., de Godoy, I., dos Reis, L., ... y Carvalho, R. (2019). Losses caused by Groundnut ringspot tospovirus in peanut crop in the State of São Paulo. Semina. Ciências Agrárias, 40 (6), 3429-3442. DOI: http://dx.doi.org/10.5433/1679-0359.2019v40n6Supl3p3429

Milne,J. R., Khumlekhasing, M. y Walter, G. H. (1996). Understanding host plant relationships of polyphagous flower thrips, a case study of Frankliniella schultzei

(Trybom). En S. Goodwin and P. Gillespie (Eds.), Proceedings of the 1995 Australia and New Zealand Thrips Workshop: Methods, Ecology and Management) (pp. 8–14). Gosford, Australia: New South Wales Agriculture.

Mumford, R. A., Barker, I. y Wood, K. R. (1996). The biology of the tospoviruses. Annals of Applied Biology, 128, 159-183. DOI: https://doi.org/10.1111/j.1744-7348.1996.tb07097.x

Nagata, T., Almeida, A. C. L., Resende, R. D. O. y De Ávila, A. C. (2004). The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology, 53 (2), 136-140. DOI: https://doi.org/10.1111/j.0032-0862.2004.00984.x

Nome, S. F., March, G. J. y Giorda, L. M. (1974). Disminución de la productividad de plantas de zapallito de tronco infectadas con el virus del mosaico de la sandía, raza 2 (Watermelon Mosaic Virus-2). IDIA 321-324, 26-31.

Olaya, C., Adhikari, B., Raikhy, G., Cheng, J. y Pappu, H. R. (2019). Identification and localization of Tospovirus genus-wide conserved residues in 3D models of the nucleocapsid and the silencing suppressor proteins. Virology Journal, 16, 7. DOI: ttps://doi.org/10.1186/s12985-018-1106-4

Oliver, J. E. y Whitfield, A. E. (2016). The Genus Tospovirus: Emerging Bunyaviruses that Threaten Food Security. Annual Review of Virology, 3, 101-124. DOI: https://doi.org/10.1146/annurev-virology-100114-055036

Pappu, H. R., Jones, R. A. C. y Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 141 (2), 219-236. DOI: https://doi.org/10.1016/j.virusres.2009.01.009

Perotto, M. C., Celli, M. G., Pozzi, E. A., Luciani, C. E. y Conci, V. C. (2016). Occurrence and characterization of a severe isolate of Watermelon mosaic virus from Argentina. European Journal of Plant Pathology, 146, 213-218. DOI: https://doi.org/10.1007 /s10658-016-0904-z

Perotto, M. C., Pozzi, E. A., Celli, M. G., Luciani, C. E., Mitidieri, M. S. y Conci, V. C. (2018). Identification and characterization of a new potyvirus infecting cucurbits. Archives of Virology, 163, 719-724. DOI: https://doi.org/10.1007/s00705-017-3660-2

Plyusnin, A., Beaty, B. J., Elliott, R. M., Goldbach, R., Kormelink, R., Lundkvist, A.,… y Tesh, R .B. (2011). Bunyaviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, E. J. Lefkowitz (Eds.), Ninth Report of the International Committee on Taxonomy of Viruses. Recuperado de: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/205/bunyaviridae

Pozzi, E. A., Luciani, C. E., Celli, M. G., Conci, V. C., y Perotto, M. C. (2019). First Report of Zucchini Lethal Chlorosis Virus in Argentina Infecting Squash Crops. Plant Disease, 104 (2), 609. DOI: https://doi.org/10.1094/PDIS-05-19-1064-PDN

Pretty, J. (2007). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1491),

447465. DOI: https://doi.org/10.1098/rstb.2007.2163

Rao, X., Liu, Y., Wu, Z., y Li, Y. (2011). First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Disease Reports, 24, 2044-0588. DOI: https://doi.org/10.5197/j.2044-0588.2011.024.012

Riley, D. G., Joseph, S. V., Srinivasan, R. y Diffie, S. (2011). Thrips Vectors of Tospoviruses. Journal of Integrated Pest Management, 2, I1–I10. DOI: https://doi.org/10.1603/IPM10020

Rotenberg, D., Jacobson, A. L., Schneweis, D. J. y Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80-89. DOI: https://doi.org/10.1016/j.coviro.2015.08.003

Sistema Nacional Argentino de Vigilancia y Monitoreo de plagas (SINAVIMO) (2019a). Frankliniella schultzei. Recuperado de https://www.sinavimo.gov.ar/plaga/frankliniella-schultzei

Sistema Nacional Argentino de Vigilancia y Monitoreo de plagas (SINAVIMO) (2019 b). Frankliniella occidentalis. Recuperado de https://www.sinavimo.gov.ar/plaga/frankliniella-occidentalis

Sistema Nacional Argentino de Vigilancia y Monitoreo de plagas (SINAVIMO) (2019 c). Groundnut ring spotvirus (GRSV). Recuperado de https://www.sinavimo.gov.ar/plaga/groundnut-ring-spot-virus

Spadotti, D., Leão, E., Rocha, K., Pavan, M. y Krause-Sakate, R. (2014). First report of Groundnut ringspot virus in cucumber fruits in Brazil. New Disease Reports,29, 25. DOI: http://dx.doi.org/10.5197/j.2044-0588.2014.029.025

Tsompana, M., Abad, J., Purugganan, M., y Moyer, J. W. (2005). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular

Ecology, 14, 53-66. DOI: https://doi.org/10.1111/j.1365-294X.2004.02392.x

Turina, M., Tavella, L. y Ciuffo, M. (2012). Tospoviruses in the Mediterranean area. Advances in Virus Research, 84, 403-437. DOI: https://doi.org/10.1016/B978-0-12-394314-9.00012-9

Webster, C. G., Frantz, G., Reitz, S. R., Funderburk, J. E., Mellinger, H. C., McAvoy, E., …. y Adkins, S. (2015). Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology,105 (3), 388-398. DOI: https://doi.org/10.1094/PHYTO-06-14-0172-R

Wijkamp, I., Almarza, N., Goldbach, R. y Peters, D. (1995). Distinct levels of specificity in thrips transmission of tospoviruses. Phytopathology,85 (10), 1069-1074. DOI: https://doi.org/10.1094/Phyto-85-1069

Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J. y Chen, C. C. (1992). Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Disease, 76, 835-840. DOI: https://doi.org/10.1094/PD-76-0835

Yin, Y., Zheng, K., Dong, J., Fang, Q., Wu, S., Wang, L. y Zhang, Z. (2014). Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virology Journal, 11, 213. DOI: https://doi.org/10.1186/s12985-014-0213-0