Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana

Contenido principal del artículo

Ana Judith Lambir Jacobo
María Evangelina Carezzano
Patricia Raquel Quiroga
Nelson Rubén Grosso

Resumen

Este estudio tuvo como objetivo analizar la composición química, la actividad antioxidante y antimicrobiana del aceite esencial de Laurus nobilis L. (AEL), y sus fracciones obtenidas por destilación molecular de camino corto. De acuerdo con la composición química, puede decirse que el AEL y sus fracciones tienen actividad antioxidante, ya que poseen un alto contenido de fenólico total (FT). La destilación molecular de camino corto se utiliza para separar las fracciones de aceite esencial con mayor actividad antioxidante que el original. El residuo de laurel (RL) exhibió la mayor actividad antioxidante, con valores más altos para los ensayos de la capacidad antioxidante equivalente a trolox con el radical catión ABTS (TEAC-ABTS) y FT. Además, RL tuvo el valor más bajo de IC50-DPPH. Para la actividad antimicrobiana, todos los productos naturales probados ejercieron una acción sobre todos los microorganismos patógenos utilizados. El AEL, así como sus fracciones, mostraron actividad antimicrobiana, bacteriostática o bactericida frente a bacterias Gram positivas y Gram negativas. El AEL y sus fracciones obtenidas por destilación molecular se pueden utilizar como conservantes de alimentos con funciones antimicrobianas y para prevenir oxidaciones. Asimismo, los consumidores consideraron positiva la adición de AEL y sus fracciones en productos alimenticios.

Detalles del artículo

Cómo citar
Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana. (2022). AgriScientia, 39(1), 105-116. https://doi.org/10.31047/1668.298x.v39.n1.35407
Sección
Artículos

Cómo citar

Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana. (2022). AgriScientia, 39(1), 105-116. https://doi.org/10.31047/1668.298x.v39.n1.35407

Referencias

Adams, R. P. (1989). Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press.

Asensio, C. M., Gallucci, N., de las Mercedes Oliva, M., Demo, M. S. and Grosso, N. R. (2014). Sensory and bio-chemical preservation of ricotta cheese using natural products. International Journal of Food Science and Technology, 49(12), 2692–2702. https://doi.org/10.1111/ijfs.12604

Asensio, C. M., Grosso, N. R. and Juliani, R. H. (2015). Quality characters, chemical composition and biological activities of oregano (Origanum spp.) Essential oils from Central and Southern Argentina. Industrial Crops and Products, 63, 203–213. https://doi.org/10.1016/j.indcrop.2014.09.056

Asensio, C. M., Quiroga, P. R., Huang, Q., Nepote, V. and Grosso, N. R. (2019). Fatty acids, volatile compounds and microbial quality preservation with an oregano nanoemulsion to extend the shelf life of hake (Merluccius hubbsi) burgers. International Journal of Food Science and Technology, 54(1), 149-160. https://doi.org/10.1111/ijfs.13919

Badr, M. M., Badawy, M. E. I. and Taktak, N. E. M. (2021). Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. Journal of Drug Delivery Science and Technology, 65, 102732. https://doi.org/10.1016/j.jddst.2021.102732

Bordiga, M. and Nollet, L. M. L. (Eds.). (2019). Food Aroma Evolution: During Food Processing, Cooking, and Aging. Taylor & Francis Group.

Borgarello, A. V., Mezza, G. N., Pramparo, M. C. and Gayol, M. F. (2015). Thymol enrichment from oregano essential oil by molecular distillation. Separation and Purification Technology, 153, 60–66. https://doi.org/10.1016/j.seppur.2015.08.035

Carezzano, M. E., Sotelo, J. P., Primo, E., Reinoso, E. B., Paletti Rovey, M. F., Demo, M. S., Giordano, W. F. and Oliva, M. de las M. (2017). Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biology, 19(4), 599–607. https://doi.org/10.1111/plb.12572

Chizzola R., Michitsch H. and Franz C. (2008). Antioxidative Properties of Thymus vulgaris Leaves: Comparison of Different Extracts and Essential Oil Chemotypes. Journal Agriculture Food Chemistry, 56(16), 6897-6904. https://doi.org/10.1021/jf800617g

Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A. and Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7(S1), S546–S552. https://doi.org/10.1016/S1995-7645(14)60288-1

Cohen, S. M., Eisenbrand, G., Fukushima, S., Gooderham, N. J., Guengerich, F. P., Hecht, S. S., Rietjens, I. M. C. M., Rosol, T. J., Davidsen, J. M., Harman, C. L., Lu, V. and Taylor, S. V. (2021). FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food and Chemical Toxicology, 155, 112378. https://doi.org/10.1016/J.FCT.2021.112378

De Sousa, J. P., De Azerêdo, G. A., De Araújo Torres, R., Da Silva Vasconcelos, M. A., Da Conceição, M. L. and De Souza, E. L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology, 154(3), 145-151. https://doi.org/10.1016/j.ijfoodmicro.2011.12.026

Demo, M., Oliva, M. de las M., López, M. L., Zunino, M. P. and Zygadlo, J. A. (2005). Antimicrobial Activity of Essential Oils Obtained from Aromatic Plants of Argentina. Pharmaceutical Biology, 43(2), 129–134. https://doi.org/10.1080/13880200590919438

Di Rienzo, J. A., Casanoves F., Balzarini M. G., González L., Tablada M. and Robledo C. W. InfoStat (versión 2018) [Software]. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar

Djenane, D., Yangüela, J., Gómez, D. and Roncalés, P. (2012). Perspectives on the use of essential oils as antimicrobials against Campylobacter jejuni CECT 7572 in retail chicken meats packaged in microaerobic atmosphere. Journal of Food Safety, 32(1), 37–47. https://doi.org/10.1111/j.1745-4565.2011.00342.x

El, S. N., Karagozlu, N., Karakaya, S. and Sahın, S. (2014). Antioxidant and Antimicrobial Activities of Essential Oils Extracted from Laurus nobilis L. Leaves by Using Solvent-Free Microwave and Hydrodistillation. Food and Nutrition Sciences, 05(02), 97–106. https://doi.org/10.4236/fns.2014.52013

Fernández, N. J., Damiani, N., Podaza, E. A., Martucci, J. F., Fasce, D., Quiroz, F., Meretta, P. E., Quintana, S., Eguaras, M. J. and Gende, L. B. (2019). Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi Journal of Biological Sciences, 26(5), 906-912. https://doi.org/10.1016/j.sjbs.2018.04.008

Flamini, G., Tebano, M., Cioni, P. L., Ceccarini, L., Ricci, A. S. and Longo, I. (2007). Comparison between the conventional method of extraction of essential oil of Laurus nobilis L. and a novel method which uses microwaves applied in situ, without resorting to an oven. Journal of Chromatography A, 1143(1–2), 36–40. https://doi.org/10.1016/j.chroma.2007.01.031

Goudjil, M.B., Ladjel, S., Bencheikh, S.E., Zighmi, S. and Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379–385.

Grosso, A. L., Asensio, C. M., Nepote, V. and Grosso, N. R. (2018). Antioxidant Activity Displayed by Phenolic Compounds Obtained from Walnut Oil Cake Used for Walnut Oil Preservation. Journal of the American Oil Chemists’ Society, 95(11), 1409–1419. https://doi.org/10.1002/aocs.12145

Hamdo, H. H., Khayata, W. and Al-Assaf, Z. (2014). The Antioxidant Activity of Tocotrienols Compared with Some Synthetic Antioxidant. Pharmacology & Pharmacy, 5(7) 612–619. http://dx.doi.org/10.4236/pp.2014.57071

Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez Garcia, D. A., Nakamura, C. V. and Dias Filho, B. P. (2002). Screening of Some Plants Used in the Brazilian Folk Medicine for the Treatment of Infectious Diseases. Memorias Do Instituto Oswaldo Cruz, 97(7), 1027–1031. https://doi.org/10.1590/S0074-02762002000700017

Horwitz, W. (Ed.). (2010). Official methods of analysis of AOAC International. Agricultural chemicals, contaminants, drugs. AOAC International, 1997. https://repositorioinstitucional.ceu.es/handle/10637/3158

Jeleń, H. (2012). Food flavors: Chemical, sensory and technological properties. Taylor & Francis Group.

Kaurinovic, B., Popovic, M. and Vlaisavljevic, S. (2010). In Vitro and in Vivo Effects of Laurus nobilis L. Leaf Extracts. Molecules, 15(5), 3378–3390. https://doi.org/10.3390/molecules15053378

Lester, G. E., Lewers, K. S., Medina, M. B. and Saftner, R. A. (2012). Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin-Ciocalteu: Assay interference by ascorbic acid. Journal of Food Composition and Analysis, 27(1), 102-107. https://doi.org/10.1016/j.jfca.2012.05.003

Mann, C. M. and Markham, J. L. (1998). A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology, 84(4), 538–544. https://doi.org/10.1046/j.1365-2672.1998.00379.x

Mello da Silveira, S., Luciano, F. B., Fronza, N., Cunha, A., Scheuermann, G. N. and Werneck Vieira, C. R. (2014). Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7°C. LWT - Food Science and Technology, 59(1), 86–93. https://doi.org/10.1016/j.lwt.2014.05.032

Mello da Silveira, S., Cunha Júnior, A., Scheuermann, G. N., Secchi, F. L. and Werneck Vieira, C. R. (2012). Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens. Ciência Rural, 42(7), 1300–1306. https://doi.org/10.1590/S0103-84782012000700026

Mezza, G. N., Borgarello, A. V., Grosso, N. R., Fernandez, H., Pramparo, M. C. and Gayol, M. F. (2018). Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chemistry, 242, 9–15. https://doi.org/10.1016/J.FOODCHEM.2017.09.042

Nagata, Y. (2003). Odor measurement review, Measurement of Odor Threshold by Triangle Odor Bag Method. Ministery of Environmental Government of Japan, 18, 118-127. https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf

Nielsen, S. S. (2017). Food Analysis Laboratory Manual (5th ed.). Springer Nature.

Olmedo, R. H. and Grosso, N. R. (2019). Oxidative Stability, Affective and Descriptive Sensory Properties of Roasted Peanut Flavored with Oregano, Laurel, and Rosemary Essential Oils as Natural Preservatives of Food Lipids. European Journal of Lipid Science and Technology, 121(5), 1800428. https://doi.org/10.1002/ejlt.201800428

Olmedo, R. H., Asensio, C. M. and Grosso, N. R. (2015). Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina. Industrial Crops and Products, 69, 21–28. https://doi.org/10.1016/j.indcrop.2015.02.005

Olmedo, R., Nepote, V. and Grosso, N. R. (2014). Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chemistry, 156, 212–219. https://doi.org/10.1016/j.foodchem.2014.01.087

Ouchikh, O., Chahed, T., Ksouri, R., Taarit, M. Ben, Faleh, H., Abdelly, C., Kchouk, M. E. and Marzouk, B. (2011).The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. Journal of Food Composition and Analysis, 24(1), 103–110. https://doi.org/10.1016/j.jfca.2010.04.006

Peryam, D.R. and Pilgrim, F. J. (1957). Hedonic scale method of measuring food preferences. Food Technology, 11, Suppl., 9-14. https://psycnet.apa.org/record/1959-02766-001

Prieto, M. C., Lapaz, M. I., Lucini, E. I., Pianzzola, M. J., Grosso, N. R. and Asensio, C. M. (2020). Thyme and suico essential oils: promising natural tools for potato common scab control. Plant Biology, 22(1), 81–89. https://doi.org/10.1111/plb.13048

Quiroga, P. R., Asensio, C. M. and Nepote, V. (2015). Antioxidant effects of the monoterpenescarvacrol, thymol and sabinene hydrate on chemical and sensory stability of roasted sunflower seeds. Journal of the Science of Food and Agriculture, 95(3), 471–479. https://doi.org/10.1002/jsfa.6744

Quiroga, P. R., Grosso, N. R and Nepote, V. (2013). Antioxidant Effect of Poleo and Oregano Essential Oil on Roasted Sunflower Seeds. Journal of Food Science, 78(12), S1904-S1012. https://doi.org/10.1111/1750-3841.12306

Quiroga, P. R., Riveros, C. G., Zygadlo, J. A., Grosso, N. R. and Nepote, V. (2011). Antioxidant activity of essential oil of oregano species from Argentina in relation to their chemical composition. International Journal of Food Science and Technology, 46(12), 2648–2655.https://doi.org/10.1111/j.1365-2621.2011.02796.x

Riveros, C. G., Nepote, V. and Grosso, N. R. (2016). Thyme and basil essential oils included in edible coatings as a natural preserving method of oilseed kernels. Journal of the Science of Food and Agriculture, 96(1), 183–191. https://doi.org/10.1002/jsfa.7080

Rocha-Guzmán, N. E., Gallegos-Infante, J. A., González-Laredo, R. F., Ramos-Gómez, M., Rodríguez-Muñoz, M. E., Reynoso-Camacho, R.,

Rocha-Uribe, A. and Roque-Rosales, M. R. (2007). Antioxidant effect of oregano (Lippiaberlandieri v. Shauer) essential oil and mother liquors. Food Chemistry, 102(1), 330–335. https://doi.org/10.1016/j.foodchem.2006.05.024

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. and Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621–632. https://doi.org/10.1016/J.FOODCHEM.2004.06.031

Shen, V.K., Siderius, D.W., Krekelberg, W.P., and Hatch, H.W. (Eds.). 2017. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://doi.org/10.18434/T4M88Q

Shahidi, F. (1998). Indicators for evaluation of lipid oxidation and off-flavor development in food. Developments in Food Science, 40(C), 55–68. https://doi.org/10.1016/S0167-4501(98)80032-0

Soubra, L., Sarkis, D., Hilan, C. and Verger, P. (2007). Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regulatory Toxicology and Pharmacology, 47(1), 68–77. https://doi.org/10.1016/j.yrtph.2006.07.005

Taban, A., Saharkhiz, M. J. and Niakousari, M. (2018). Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustainable Chemistry and Pharmacy, 9, 12-18. https://doi.org/10.1016/j.scp.2018.05.001

Zazharskyi, V. V., Davydenko, P. O, Kulishenko, O. M, Borovik, I. V. and Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169. https://doi.org/10.15421/011922