Density model for a pesticide exposure index applied to rural workers
Keywords:
pesticide exposure, goodness of fit , life variables distribution, generalized birnbaum-saunders, inverse gaussian generalizedAbstract
Since agriculture is one of the main productive activities in Córdoba province, Argentina, it is necessary that special attention be paid to the use of pesticides and their effect on the health of agro-applicators. One way to measure the consequences of the application of this type of substances is through the Index Level of Intensity at Exposure (IE), built by the Group of Environmental Epidemiology of Cancer in Córdoba, Faculty of Medical Sciences, UNC (GEACC), for the population of rural workers in Córdoba.
From a sample of rural workers, the empirical characteristics of the index were analyzed to infer about its population distribution. In the search for an adequate distribution for the intensity index, the models of the life variables were taken into account from the most traditional (exponential, Weibull, lognormal, gamma, Birnbaum-Saunders and inverse Gaussian) to the new distributions (Generalized Birnbaum-Saunders and Inverse Gaussian Type). In this work, the best fit for IE was achieved with the Weibull distribution. Once the best fit was defined, the percentiles were estimated, and three risk levels were defined (low, medium, and high). Based on these risk levels, sociodemographic and health characteristics of the workers within each group were studied. The following factors resulted the most significant to determine the risk of the applicators: the seniority (greater than 10 years) in the tasks of mixing, to apply or be present while it is handling pesticides, not to have an agronomist prescription, to inject animals and to present signs of irritation.
Downloads
References
Aarset, M. V. (1987). How to identify a bathtub shaped hazard rate? IEEE Trans R 36,106-108.
Barros, M., Leiva, V., y Paula, G. (6 de mayo de 2008). Paquete de lenguaje R "gbs".
Bonner, M.R. y M.C.R. Alavanja (2005). The Agricultural Health Study Biomarker Workshop on Cancer Etiology. Introduction: Overview of Study Design, Results, and Goals of the Workshop. J Biochem Mol Toxicol 19(3): 169-171.
Chen, G., y Balakrishnan, N. (1995). A general purpose aproximate goodness-of-Fit Test. Journal of quality technology, 154.
Delignette-Muller, M. L., y Dutang, C. (2015). fitdistrplus: An R package for fitting distributions. Journal of Statistical Software, Volume 64, Issue 4.
Dirección de Estimaciones Agrícolas - Dirección Nacional de Agricultura. (2018). Estimaciones agrícolas. Obtenido de Ministerio de Agricultura, Ganadería y Pesca, Presidencia de la Nación: http://datosestimaciones.magyp.gob.ar/
Dosemeci, M., Alavaja, M.C.R., Rowland, A.S., Mage, D., Zahm, S. H., Rothman, N., Lubin, J.H., Hoppin, j. A., Sandler, D.P., Blair, A. (2002). A quantitative approach for estimating exposure to pesticides in the agricultural health study. The Annals of Occupational Hygiene, 46 (2): 245-260.
Lantieri, M., Butinof, M., R.A., F., Stimolo, M., Blanco, M., y Diaz, M. D. (2011). Work Practices, Exposure Assessment and Geographical Analysis of Pesticide Applicators in Argentina. Córdoba: Margarita Stoytcheva.
Leiva, V., Barros, M., Paula, G., y Saunders, S. (11 al 15 de agosto de 2010). Modelos de Daño Acumulativo Birbaum-Saunders y su Implementación en Código R. Simposio de Estadística 20 años. Santa Marta, Colombia.
Leiva, V., Hernández, H., y Sanhuenza, A. (20 de abril de 2008). Paquete de lenguaje R "ig".
Leiva, V., Soto, G., Cabrera, E., y Cabrera, G. (2011). Nuevas cartas de control basadas en la distribución. Revista Colombiana de Estadística, 34 (1), 147 a 176.
Marshal, A., y Olkin, I. (2007). Life Distributions. New York: Springer.
Vilca, F., Sanhuenza, A., Leiva, V., y Christakos, G. (2010). An extended Birnbaum-Saunders model and its application in the study of environmental quality in Santiago, Chile. Stoch Environ Res Risk Assess 24, 771-782.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Olga E. Pradró, María I. Stimolo, María D. P. Díaz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.