Double heterozygous mutation in RAD50 and ATM genes in a Peruvian family with five cancer types: a case report
DOI:
https://doi.org/10.31053/1853.0605.v79.n1.32795Keywords:
breast neoplasms, medical genetics, genetic testingAbstract
Introduction: Cancer is the second leading cause of death worldwide, with 70% of cancer deaths occurring in low- or middle- income countries. To mitigate the mortality of this disease, it is recommended the evaluation of multiple high-penetrance genes.
Methods: We used a multi-gene panel testing to identify germline variants in a unique case of a breast cancer patient with a family history of five different neoplasm types. The patient, at the age of 50 years, was diagnosed with a high-grade cribriform ductal carcinoma in situ in her left breast.
Results: We identified two heterozygous mutations, one classified as pathogenic/likely pathogenic in RAD50 and the other classified as a variant of uncertain significance (VUS) in ATM.
Conclusion: In conclusion, the use of the multi-gene panel leads to the identification of a double heterozygous mutation in RAD50 and ATM in a breast cancer patient from a Peruvian family with several cancer types. This data helps our physician team and the patient to choose a treatment following the post-test genetic counseling.
Downloads
References
1. Wild CP, Weiderpass E, Stewart BW. World cancer report: cancer research for cancer prevention. Lyon: International Agency for Research on Cancer; 2020. https://digitallibrary.in.one.un.org/TempPdfFiles/5932_1.pdf.
2. Robson ME, Bradbury AR, Arun B, Domchek SM, Ford JM, Hampel HL, Lipkin SM, Syngal S, Wollins DS, Lindor NM. American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility. J Clin Oncol. 2015 Nov 1;33(31):3660-7. doi: 10.1200/JCO.2015.63.0996.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020 Jul;70(4):313.
4. Gobbini E, Cassani C, Villa M, Bonetti D, Longhese MP. Functions and regulation of the MRX complex at DNA double-strand breaks. Microb Cell. 2016 Jul 27;3(8):329-337. doi: 10.15698/mic2016.08.517.
5. Wu Y, Xiao S, Zhu XD. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol. 2007 Sep;14(9):832-40. doi: 10.1038/nsmb1286.
6. Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem. 2018 Jun 20;87:263-294. doi: 10.1146/annurev-biochem-062917-012415.
7. Castéra L, Krieger S, Rousselin A, Legros A, Baumann JJ, Bruet O, Brault B, Fouillet R, Goardon N, Letac O, Baert-Desurmont S, Tinat J, Bera O, Dugast C, Berthet P, Polycarpe F, Layet V, Hardouin A, Frébourg T, Vaur D. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet. 2014 Nov;22(11):1305-13. doi: 10.1038/ejhg.2014.16. 8. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell. 2000;101(7):789–800.
9. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999 Nov 5;286(5442):1162-6. doi: 10.1126/science.286.5442.1162.
10. George Priya Doss C, Rajith B. Computational refinement of functional single nucleotide polymorphisms associated with ATM gene. PLoS One. 2012;7(4):e34573. doi: 10.1371/journal.pone.0034573.
11. Cassani C, Vertemara J, Bassani M, Marsella A, Tisi R, Zampella G, Longhese MP. The ATP-bound conformation of the Mre11-Rad50 complex is essential for Tel1/ATM activation. Nucleic Acids Res. 2019 Apr 23;47(7):3550-3567. doi: 10.1093/nar/gkz038.
12. Andrés R, Menao S, Arruebo M, Quílez E, Cardiel MJ. Double heterozygous mutation in the BRCA1 and ATM genes involved in development of primary metachronous tumours: a case report. Breast Cancer Res Treat. 2019 Oct;177(3):767-770. doi: 10.1007/s10549-019-05343-4.
13. Tsaousis GN, Papadopoulou E, Apessos A, Agiannitopoulos K, Pepe G, Kampouri S, Diamantopoulos N, Floros T, Iosifidou R, Katopodi O, Koumarianou A, Markopoulos C, Papazisis K, Venizelos V, Xanthakis I, Xepapadakis G, Banu E, Eniu DT, Negru S, Stanculeanu DL, Ungureanu A, Ozmen V, Tansan S, Tekinel M, Yalcin S, Nasioulas G. Analysis of hereditary cancer syndromes by using a panel of genes: novel and multiple pathogenic mutations. BMC Cancer. 2019 Jun 3;19(1):535. doi: 10.1186/s12885-019-5756-4.
14. Manahan ER, Kuerer HM, Sebastian M, Hughes KS, Boughey JC, Euhus DM, Boolbol SK, Taylor WA. Consensus Guidelines on Genetic` Testing for Hereditary Breast Cancer from the American Society of Breast Surgeons. Ann Surg Oncol. 2019 Oct;26(10):3025-3031. doi: 10.1245/s10434-019-07549-8.
15. Miller ME, Muhsen S, Olcese C, Patil S, Morrow M, Van Zee KJ. Contralateral Breast Cancer Risk in Women with Ductal Carcinoma In Situ: Is it High Enough to Justify Bilateral Mastectomy? Ann Surg Oncol. 2017 Oct;24(10):2889-2897. doi: 10.1245/s10434-017-5931-2.
.
Published
Issue
Section
License
Copyright (c) 2022 Universidad Nacional de Córdoba
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The generation of derivative works is allowed as long as it is not done for commercial purposes. The original work may not be used for commercial purposes.