VARIABILIDAD Y HETEROSIS DE RASGOS REPRODUCTIVOS EN LÍNEAS E HÍBRIDOS DE MAÍZ CON DIFERENTE EXPRESIÓN DE MACOLLAJE Y PROLIFICIDAD

Autores

  • S. A. Lutz Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
  • C. G. López Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
  • G. A. Maddonni Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
  • K. E. D’Andrea Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.

Palavras-chave:

VARIABILIDAD, HETEROSIS, LÍNEAS E HÍBRIDOS DE MAÍZ, MACOLLAJE, PROLIFICIDAD

Resumo

Los objetivos de este trabajo fueron: (i) evaluar la variabilidad de 15 rasgos relacionados con la plasticidad vegetativo-reproductiva en 6 líneas de maíz con diferente expresión de macollaje y prolificidad y sus 15 híbridos derivados, (ii) analizar la asociación de dichos rasgos en ambos grupos genotípicos (GG= líneas e híbridos) entre sí y con el NGP y (iii) calcular la magnitud de la heterosis, como así también la H2, las ACG y ACE y la importancia relativa de los efectos de la ACG y ACE para cada rasgo

Referências

Baker, R.J. 1978. Issues in diallel analysis. Crop Science 18(4): 533-536.

Cerrudo, D., Hernández, M., Tollenaar, M., Vega, C. R., & Echarte, L. 2020. Kernel number response to plant density in tropical, temperate, and tropical × temperate maize hybrids. Crop Science, 60(1), 381-390.

Chapman, S.C., Crossa J., Edmeades, G.O. 1997. Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two-mode pattern analysis of yield. Euphytica 95:1–9.

Chapman, S.C., Edmeades, G.O. 1999. Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Science 39: 1315-1324.

Chiang, M. S., Smith, J. D. 1967. Diallel analysis of the inheritance of quantitative characters in grain sorghum. I. Heterosis and Inbreeding depression. Canadian Journal of Genetics and Cytology, 9(1), 44-51.

Cirilo, A.G., Andrade, F.H. 1994. Sowing date and maize productivity: II. Kernel number determination. Crop Science 34: 1044-1046.

Cruz, C.D. 1997. Programa Genes: aplicativo computacional em genética e estatística. UFV Viçosa.

D’Andrea, K. E., Otegui, M. E., De la Vega, A. J. 2008. Multi-attribute responses of maize inbred lines across managed environments. Euphytica, 162(3), 381-394.

D’Andrea, K. E., Otegui, M. E., Cirilo, A. G., Eyherabide, G. H. 2009. Ecophysiological traits in maize hybrids and their parental inbred lines: Phenotyping of responses to contrasting nitrogen supply levels. Field Crops Research, 114(1): 147-158.

D’Andrea, K. E., Otegui, M. E., Cirilo, A. G., Eyhérabide, G. H. 2013. Parent–Progeny Relationships between Maize Inbreds and Hybrids: Analysis of Grain Yield and Its Determinants for Contrasting Soil Nitrogen Conditions. Crop Science 53: 2147-2161.

Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Falconer, D.S., Mackay, T.F.C. 1996. Introduction to quantitative genetics. 4th ed. Pearson Education Limited. Prentice Hall, Essex, England.

Galizia, L.A., Munaro, E.M., Cirilo, A.G., Otegui, M.E., D’Andrea, K.E. 2020. Phenotypic plasticity for biomass partitioning in maize: genotype effects across a range of environments. Field Crops Research 256: 107914. https://doi.org/10.1016/j.fcr.2020.107914

Galizia, L.A. 2022. Plasticidad fenotípica y bases genéticas de la producción y partición de biomasa en el cultivo de maíz. Tesis de Doctorado. Facultad de Agronomía, Universidad de Buenos Aires.

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9:463–493.

Hallauer, A.R., Miranda, J.B. 1988. Quantitative genetics in maize breeding, 2nd Ed. The Iowa State Univ. Press. Ames, IA, USA.

Hayman, B. 1954. The theory and analysis of diallel crosses. Genetics 39: 789-809.

Kroonenberg, P.M., K.E. Basford, and A.G.M. Ebskamp. 1995. Three-way cluster and component analysis of maize variety trials. Euphytica 84:31–42. doi:10.1007/BF01677554

Maddonni, G. A., Martínez-Bercovich, J. 2014. Row spacing, landscape position and maize grain yield. International Journal of Agronomy. Article ID 195012. (http://dx.doi.org/10.1155/2014/195012).

Munaro, E.M., Eyhérabide, G.H., D’Andrea, K.E., Cirilo A.G., Otegui, M.E. 2011. Heterosis × environment interaction in maize: What drives heterosis for grain yield? Field Crops Research 124: 441-449.

Otegui, M.E., 1995. Prolificacy and grain yield components in modern Argentinean maize hybrids. Maydica 40: 371–376.

Otegui, M. E., Bonhomme, R. 1998. Grain yield components in maize: I. Ear growth and kernel set. Field Crops Research, 56(3): 247-256.

Otegui M.E. y F.H. Andrade. 2000. New relationships between light interception, ear growth, and kernel set in maize. In: M.E. Westgate y K.J. Boote (Eds.), Physiology and Modeling Kernel Set in Maize. CSSA and ASA, Madison, WI. p. 89-102.

Parco, M., Ciampitti, I. A., D’Andrea, K. E., Maddonni, G. Á. 2020. Prolificacy and nitrogen internal efficiency in maize crops. Field Crops Research, 256: 107912.

Parco, M., D’Andrea, K. E., Maddonni, G. Á. 2022. Maize prolificacy under contrasting plant densities and N supplies: I. Plant growth, biomass allocation and development of apical and sub-apical ears from floral induction to silking. Field Crops Research, 284: 108553.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org.

Ritchie, S.W. y Hanway, J.J., 1982. How a plant crop develops. Spec. Rep. 48. Iowa State University of Science and Technology, Coop. Ext. Serv., Ames, Iowa.

Rotili, D.H., Maddonni, G.A. 2016. Desarrollo vegetativo y reproductivo de vástagos de diferente orden de tres híbridos comerciales de maíz en dos densidades de siembra. Agronomía & ambiente Rev. Facultad de Agronomía UBA, 36(1): 21-32.

Rotili, D.H., Giorno, A., Maddonni, G.A. 2019. Expansion of maize production in a semi-arid region of Argentina: climatic and edaphic constraints and their implications on crop management. Agricultural Water Management 225, 105761.

Rotili, D.H., Abeledo, G., deVoil, P., Rodriguez, D., Maddonni, G.A. 2020. Exploring the effect of tillers on the water economy, plant growth and kernel set of low-density maize crops. Agricultural Water Management (in press).

Rotili, D. H., Sadras, V. O., Abeledo, L. G., Ferreyra, J. M., Micheloud, J. R., Duarte, G., Maddonni, G. A. 2021. Impacts of vegetative and reproductive plasticity associated with tillering in maize crops in low-yielding environments: A physiological framework. Field Crops Research, 265, 108107.

Rotili, D. H., Abeledo, L. G., Larrea, S. M., Maddonni, G. Á. 2022. Grain yield and kernel setting of multiple-shoot and/or multiple-ear maize hybrids. Field Crops Research, 279, 108471.

Sprague, G.F. y Tatum, L.A. 1942. General and specific combinig ability in a single cross of corn. Journal of the American Society of Agronomy 34: 923-932.

Tollenaar M., Ahmadzadeh A., Lee E.A. 2004. Physiological Basis of Heterosis for Grain Yield in Maize. Crop Science 44: 2086-2094

Publicado

2024-05-28

Como Citar

VARIABILIDAD Y HETEROSIS DE RASGOS REPRODUCTIVOS EN LÍNEAS E HÍBRIDOS DE MAÍZ CON DIFERENTE EXPRESIÓN DE MACOLLAJE Y PROLIFICIDAD. (2024). Nexo Agropecuario, Edición Especial, 101-107. https://revistas.psi.unc.edu.ar/index.php/nexoagro/article/view/45194