Resumen
En esta era de teléfonos inteligentes y tecnología Bluetooth el uso de auriculares se ha vuelto omnipresente. Su accesibilidad y portabilidad han llevado a un cambio de paradigma en el consumo de música, podcasts, audiolibros y otros contenidos de audio. Una vez meros instrumentos de utilidad, se han convertido en compañeros íntimos que ofrecen paisajes sonoros personalizados directamente en los oídos. Sin embargo, debido a la proximidad de los auriculares a las delicadas estructuras del oído interno, la posibilidad de una pérdida de audición relacionada con el ruido se ha transformado en un riesgo para la salud auditiva. Además de una posible discapacidad auditiva, el uso prolongado de auriculares puede inducir sobrecarga sensorial, fatiga mental y tensión cognitiva, contribuyendo al desarrollo de estrés, depresión, aislamiento social, dificultades de comunicación y reducción de la calidad de vida de los individuos. Así, el uso de auriculares es un arma de doble filo. Si bien ofrece conveniencia y entretenimiento personalizado, también plantea riesgos para la salud auditiva y sicológica de los individuos. Comprender las intrincadas conexiones entre el uso de auriculares, estrés, y salud auditiva puede contribuir a que las personas puedan disfrutar de sus experiencias de audio sin comprometer su bienestar a largo plazo.
Referencias
Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S. y Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet (London, England), 383(9925), 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X
Bellinger, D. L., Millar, B. A., Perez, S., Carter, J., Wood, C., ThyagaRajan, S., Molinaro, C., Lubahn, C. y Lorton, D. (2008). Sympathetic modulation of immunity: relevance to disease. Cellular immunology, 252(1-2), 27–56. https://doi.org/10.1016/j.cellimm.2007.09.005
Bottaccioli, A. G., Bottaccioli, F. y Pinelatinoamericana (2023). Los estados psíquicos se traducen en moléculas biológicas: las consecuencias para la medicina y la psicología. Pinelatinoamericana, 3(1), 54–89. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/40624
Busillo, J. M., Azzam, K. M. y Cidlowski, J. A. (2011). Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. The Journal of biological chemistry, 286(44), 38703–38713. https://doi.org/10.1074/jbc.M111.275370
Canlon, B., Theorell, T. y Hasson, D. (2013). Associations between stress and hearing problems in humans. Hearing research, 295, 9–15. https://doi.org/10.1016/j.heares.2012.08.015
Capuron, L., Raison, C. L., Musselman, D. L., Lawson, D. H., Nemeroff, C. B. y Miller, A. H. (2003). Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. The American journal of psychiatry, 160(7), 1342–1345. https://doi.org/10.1176/appi.ajp.160.7.1342
Chrousos G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England journal of medicine, 332(20), 1351–1362. https://doi.org/10.1056/NEJM199505183322008
Cohen, S., Janicki-Deverts, D. y Miller, G. E. (2007). Psychological stress and disease. JAMA, 298(14), 1685–1687. https://doi.org/10.1001/jama.298.14.1685
Cohen, S., Janicki-Deverts, D., Doyle, W. J., Miller, G. E., Frank, E., Rabin, B. S. y Turner, R. B. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5995–5999. https://doi.org/10.1073/pnas.1118355109
Cólica, P. R. (2021). Conductas emocionales y estrés. Pinelatinoamericana, 1(1), 12–17. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/36036
Du Gay, P. (1997). Doing Cultural Studies: The Story of the Sony Walkman. SAGE Publications.
Elenkov I. J. (2008). Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochemistry international, 52(1-2), 40–51. https://doi.org/10.1016/j.neuint.2007.06.037
Foster, J. A., Rinaman, L. y Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of stress, 7, 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001
Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. y Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, behavior, and immunity, 21(1), 47–59. https://doi.org/10.1016/j.bbi.2006.03.005
Fujioka, M., Kanzaki, S., Okano, H. J., Masuda, M., Ogawa, K. y Okano, H. (2006). Proinflammatory cytokines expression in noise-induced damaged cochlea. Journal of neuroscience research, 83(4), 575–583. https://doi.org/10.1002/jnr.20764
García-Bueno, B., Caso, J. R. y Leza, J. C. (2008). Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neuroscience and biobehavioral reviews, 32(6), 1136–1151. https://doi.org/10.1016/j.neubiorev.2008.04.001
Glaser, R. y Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature reviews. Immunology, 5(3), 243–251. https://doi.org/10.1038/nri1571
Gratton, M. A., Eleftheriadou, A., Garcia, J., Verduzco, E., Martin, G. K., Lonsbury-Martin, B. L. y Vázquez, A. E. (2011). Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hearing research, 277(1-2), 211–226. https://doi.org/10.1016/j.heares.2010.12.014
Harrop-Jones, A., Wang, X., Fernandez, R., Dellamary, L., Ryan, A. F., LeBel, C. y Piu, F. (2016). The Sustained-Exposure Dexamethasone Formulation OTO-104 Offers Effective Protection against Noise-Induced Hearing Loss. Audiology & neuro-otology, 21(1), 12–21. https://doi.org/10.1159/000441814
Hawkley, L. C. y Cacioppo, J. T. (2010). Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Annals of behavioral medicine: a publication of the Society of Behavioral Medicine, 40(2), 218–227. https://doi.org/10.1007/s12160-010-9210-8
Hickox, A. E., Larsen, E., Heinz, M. G., Shinobu, L. y Whitton, J. P. (2017). Translational issues in cochlear synaptopathy. Hearing research, 349, 164–171. https://doi.org/10.1016/j.heares.2016.12.010
Huang, J. L., Zhang, Y. L., Wang, C. C., Zhou, J. R., Ma, Q., Wang, X., Shen, X. H. y Jiang, C. L. (2012). Enhanced phosphorylation of MAPKs by NE promotes TNF-α production by macrophage through α adrenergic receptor. Inflammation, 35(2), 527–534. https://doi.org/10.1007/s10753-011-9342-4
Jespersen, K. V., Otto, M., Kringelbach, M., Van Someren, E. y Vuust, P. (2019). A randomized controlled trial of bedtime music for insomnia disorder. Journal of sleep research, 28(4), e12817. https://doi.org/10.1111/jsr.12817
Johnson, J. D., Campisi, J., Sharkey, C. M., Kennedy, S. L., Nickerson, M., Greenwood, B. N. y Fleshner, M. (2005). Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience, 135(4), 1295–1307. https://doi.org/10.1016/j.neuroscience.2005.06.090
Kalinec F. (2016). El movimiento celular en la sintonía fina del oído..., y las bases moleculares de la “sordera causada por los iPods”. En A. R. Eynard., M. A. Valentich y R. A. Rovasio. Histología y Embriología Humanas - Bases Celulares y Moleculares (ed., 5a Revisada Edición, pp. 469-476). Ed. Médica Panamericana.
Kalinec, G. M., Lomberk, G., Urrutia, R. A. y Kalinec, F. (2017). Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Frontiers in cellular neuroscience, 11, 192. https://doi.org/10.3389/fncel.2017.00192
Kirkegaard, M., Murai, N., Risling, M., Suneson, A., Järlebark, L. y Ulfendahl, M. (2006). Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience, 142(2), 425–435. https://doi.org/10.1016/j.neuroscience.2006.06.037
Kujawa, S. G. y Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. The Journal of neuroscience: the official journal of the Society for Neuroscience, 29(45), 14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009
Liberman, M. C. y Kujawa, S. G. (2017). Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hearing research, 349, 138–147. https://doi.org/10.1016/j.heares.2017.01.003
Liu, Y. Z., Wang, Y. X. y Jiang, C. L. (2017). Inflammation: The Common Pathway of Stress-Related Diseases. Frontiers in human neuroscience, 11, 316. https://doi.org/10.3389/fnhum.2017.00316
Maison, S. F., Usubuchi, H. y Liberman, M. C. (2013). Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(13), 5542–5552. https://doi.org/10.1523/JNEUROSCI.5027-12.2013
Maratos, A. S., Gold, C., Wang, X. y Crawford, M. J. (2008). Music therapy for depression. The Cochrane database of systematic reviews, (1), CD004517. https://doi.org/10.1002/14651858.CD004517.pub2
Miller, A. H., Maletic, V. y Raison, C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological psychiatry, 65(9), 732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
Miller, G. E., Cohen, S. y Ritchey, A. K. (2002). Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health psychology: official journal of the Division of Health Psychology, American Psychological Association, 21(6), 531–541. https://doi.org/10.1037//0278-6133.21.6.531
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. y O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 19, 683–765. https://doi.org/10.1146/annurev.immunol.19.1.683
Muchnik, C., Amir, N., Shabtai, E. y Kaplan-Neeman, R. (2012). Preferred listening levels of personal listening devices in young teenagers: self reports and physical measurements. International journal of audiology, 51(4), 287–293. https://doi.org/10.3109/14992027.2011.631590
Munhoz, C. D., García-Bueno, B., Madrigal, J. L., Lepsch, L. B., Scavone, C. y Leza, J. C. (2008). Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 41(12), 1037–1046. https://doi.org/10.1590/s0100-879x2008001200001
Norman, G. J., Karelina, K., Zhang, N., Walton, J. C., Morris, J. S. y Devries, A. C. (2010). Stress and IL-1beta contribute to the development of depressive-like behavior following peripheral nerve injury. Molecular psychiatry, 15(4), 404–414. https://doi.org/10.1038/mp.2009.91
Oberto, M. G. y Defagó, M. D. (2022). Implicancia de la dieta en la composición y variabilidad de la microbiota intestinal: sus efectos en la obesidad y ansiedad. Pinelatinoamericana, 2(2), 137–152. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38373
O'Garra, A. y Vieira, P. (2004). Regulatory T cells and mechanisms of immune system control. Nature medicine, 10(8), 801–805. https://doi.org/10.1038/nm0804-801
Pace, T. W., Mletzko, T. C., Alagbe, O., Musselman, D. L., Nemeroff, C. B., Miller, A. H. y Heim, C. M. (2006). Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. The American journal of psychiatry, 163(9), 1630–1633. https://doi.org/10.1176/ajp.2006.163.9.1630
Portnuff, C. D., Fligor, B. J. y Arehart, K. H. (2011). Teenage use of portable listening devices: a hazard to hearing?. Journal of the American Academy of Audiology, 22(10), 663–677. https://doi.org/10.3766/jaaa.22.10.5
Rovasio, R. A. (2022). Diálogo entre la tripa y la mente. Pinelatinoamericana, 2(3), 156–170. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38630
Schroder, K. y Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821–832. https://doi.org/10.1016/j.cell.2010.01.040
Serrano-Miranda, E. G. (2022). El intestino-microbiota en los ejes reguladores del metabolismo. Pinelatinoamericana, 2(3), 225–239. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38949
Smith R. S. (1991). The macrophage theory of depression. Medical hypotheses, 35(4), 298–306. https://doi.org/10.1016/0306-9877(91)90272-z
Sorrells, S. F. y Sapolsky, R. M. (2007). An inflammatory review of glucocorticoid actions in the CNS. Brain, behavior, and immunity, 21(3), 259–272. https://doi.org/10.1016/j.bbi.2006.11.006
Thoma, M. V., La Marca, R., Brönnimann, R., Finkel, L., Ehlert, U. y Nater, U. M. (2013). The effect of music on the human stress response. PloS one, 8(8), e70156. https://doi.org/10.1371/journal.pone.0070156
Tsigos, C. y Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of psychosomatic research, 53(4), 865–871. https://doi.org/10.1016/s0022-3999(02)00429-4
Wakabayashi, K., Fujioka, M., Kanzaki, S., Okano, H. J., Shibata, S., Yamashita, D., Masuda, M., Mihara, M., Ohsugi, Y., Ogawa, K. y Okano, H. (2010). Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neuroscience research, 66(4), 345–352. https://doi.org/10.1016/j.neures.2009.12.008
Wang, J., Van De Water, T. R., Bonny, C., de Ribaupierre, F., Puel, J. L. y Zine, A. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(24), 8596–8607. https://doi.org/10.1523/JNEUROSCI.23-24-08596.2003
Wohleb, E. S. y Delpech, J. C. (2017). Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in neuro-psychopharmacology & biological psychiatry, 79(Pt A), 40–48. https://doi.org/10.1016/j.pnpbp.2016.04.013
Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey, M. T., Nelson, R. J., Godbout, J. P. y Sheridan, J. F. (2011). β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. The Journal of neuroscience: the official journal of the Society for Neuroscience, 31(17), 6277–6288. https://doi.org/10.1523/JNEUROSCI.0450-11.2011
Zhou, J. R., Xu, Z. y Jiang, C. L. (2008). Neuropeptide Y promotes TGF-beta1 production in RAW264.7 cells by activating PI3K pathway via Y1 receptor. Neuroscience bulletin, 24(3), 155–159. https://doi.org/10.1007/s12264-008-0130-6
Zhu, C. B., Blakely, R. D. y Hewlett, W. A. (2006). The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 31(10), 2121–2131. https://doi.org/10.1038/sj.npp.1301029
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2024 Pinelatinoamericana