¿Los ácidos grasos esenciales de los alimentos pueden prevenir y mejorar las manifestaciones a largo plazo del post-Covid-19?
HTML ingles (Inglés)
HTML
PDF ingles (Inglés)
PDF

Palabras clave

COVID persistente
lípidos poliinsaturados dietarios
ácidos grasos esenciales
AGE
dieta

Cómo citar

¿Los ácidos grasos esenciales de los alimentos pueden prevenir y mejorar las manifestaciones a largo plazo del post-Covid-19?. (2024). Pinelatinoamericana, 4(1), 31-40. https://revistas.psi.unc.edu.ar/index.php/pinelatam/article/view/44572

Resumen

Las manifestaciones de COVID-19, asi como las observadas en el post-COVID y post-vacuna de ARNm pueden resultar en un “síndrome de COVID prolongado o persistente”. El autor propone que el síndrome de larga duración se debe a una deficiencia de ácidos grasos esenciales (AGE) y sus metabolitos. Los AGE y sus metabolitos inactivan el virus SARS-CoV-2, suprimen la formación y acción excesiva de ciertas citocinas, son citoprotectores, inhiben la activación de NF-kB y regulan la vía cGAS-STING, influyen en la microbiota intestinal y su metabolismo, y modulan la función de plaquetas, macrófagos y leucocitos. Regulan la secreción y función de los neurotransmisores, facilitan la regeneración de tejidos y la cicatrización de heridas. En vista de sus variadas acciones, es probable que los AGE sean beneficiosos en la prevención y el tratamiento del síndrome COVID de larga duración.

HTML ingles (Inglés)
HTML
PDF ingles (Inglés)
PDF

Referencias

Al-Aly, Z., Xie, Y. y Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259–264. https://doi.org/10.1038/s41586-021-03553-9.

Choutka, J., Jansari, V., Hornig, M. y Iwasaki, A. (2022). Unexplained post-acute infection syndromes. Nature medicine, 28(5), 911–923. https://doi.org/10.1038/s41591-022-01810-6.

Dani, M., Dirksen, A., Taraborrelli, P., Torocastro, M., Panagopoulos, D., Sutton, R. y Lim, P. B. (2021). Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clinical medicine (London, England), 21(1), e63–e67. https://doi.org/10.7861/clinmed.2020-0896.

Das, U. N. (2020a). Can Bioactive Lipids Inactivate Coronavirus (COVID-19)?. Archives of medical research, 51(3), 282–286. https://doi.org/10.1016/j.arcmed.2020.03.004.

Das, U. N. (2020b). Response to: Bioactive Lipids and Coronavirus (COVID-19)-further Discussion. Archives of medical research, 51(5), 445–449. https://doi.org/10.1016/j.arcmed.2020.04.004.

Das, U. N. (2021a). Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Archives of medical science: AMS, 19(5), 1327–1359. https://doi.org/10.5114/aoms/135703.

Das, U. N. (2021b). Essential fatty acids and their metabolites in the pathobiology of (coronavirus disease 2019) COVID-19. Nutrition (Burbank, Los Angeles County, Calif.), 82, 111052. https://doi.org/10.1016/j.nut.2020.111052.

Das, U. N. (2022). Papel de los Lípidos Bioactivos en Psiquiatría, Inmunología, Neurología y Endocrinología (PINE). Pinelatinoamericana, 2(1), 56–81. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/37046

Davis, H. E., McCorkell, L., Vogel, J. M. y Topol, E. J. (2023). Long COVID: major findings, mechanisms and recommendations. Nature reviews. Microbiology, 21(3), 133–146. https://doi.org/10.1038/s41579-022-00846-2.

De Vadder, F., Grasset, E., Mannerås Holm, L., Karsenty, G., Macpherson, A. J., Olofsson, L. E. y Bäckhed, F. (2018). Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6458–6463. https://doi.org/10.1073/pnas.1720017115.

Goc, A., Niedzwiecki, A. y Rath, M. (2021). Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Scientific reports, 11(1), 5207. https://doi.org/10.1038/s41598-021-84850-1.

Gopaldas, M., Zanderigo, F., Zhan, S., Ogden, R. T., Miller, J. M., Rubin-Falcone, H., Cooper, T. B., Oquendo, M. A., Sullivan, G., Mann, J. J. y Sublette, M. E. (2019). Brain serotonin transporter binding, plasma arachidonic acid and depression severity: A positron emission tomography study of major depression. Journal of affective disorders, 257, 495–503. https://doi.org/10.1016/j.jad.2019.07.035.

Hibbeln, J. R., Linnoila, M., Umhau, J. C., Rawlings, R., George, D. T. y Salem, N., Jr (1998). Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early- and late-onset alcoholics. Biological psychiatry, 44(4), 235–242. https://doi.org/10.1016/s0006-3223(98)00141-3.

Legan, T. B., Lavoie, B. y Mawe, G. M. (2022). Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterology and motility, 34(10), e14346. https://doi.org/10.1111/nmo.14346.

Lim, S. H., Ju, H. J., Han, J. H., Lee, J. H., Lee, W. S., Bae, J. M. y Lee, S. (2023). Autoimmune and Autoinflammatory Connective Tissue Disorders Following COVID-19. JAMA network open, 6(10), e2336120. https://doi.org/10.1001/jamanetworkopen.2023.36120.

Merad, M., Blish, C. A., Sallusto, F. y Iwasaki, A. (2022). The immunology and immunopathology of COVID-19. Science (New York, N.Y.), 375(6585), 1122–1127. https://doi.org/10.1126/science.abm8108.

Patrick, R. P. y Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(6), 2207–2222. https://doi.org/10.1096/fj.14-268342.

Pinchaud, K., Hafeez, Z., Auger, S., Chatel, J. M., Chadi, S., Langella, P., Paoli, J., Dary-Mourot, A., Maguin-Gaté, K. y Olivier, J. L. (2022). Impact of Dietary Arachidonic Acid on Gut Microbiota Composition and Gut-Brain Axis in Male BALB/C Mice. Nutrients, 14(24), 5338. https://doi.org/10.3390/nu14245338.

Pretorius, E., Vlok, M., Venter, C., Bezuidenhout, J. A., Laubscher, G. J., Steenkamp, J. y Kell, D. B. (2021). Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovascular diabetology, 20(1), 172. https://doi.org/10.1186/s12933-021-01359-7.

Thaweethai, T., Jolley, S. E., Karlson, E. W., Levitan, E. B., Levy, B., McComsey, G. A., McCorkell, L., Nadkarni, G. N., Parthasarathy, S., Singh, U., Walker, T. A., Selvaggi, C. A., Shinnick, D. J., Schulte, C. C. M., Atchley-Challenner, R., Alba, G. A., Alicic, R., Altman, N., Anglin, K., Argueta, U., … RECOVER Consortium (2023). Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA, 329(22), 1934–1946. https://doi.org/10.1001/jama.2023.8823.

Todorov, H., Kollar, B., Bayer, F., Brandão, I., Mann, A., Mohr, J., Pontarollo, G., Formes, H., Stauber, R., Kittner, J. M., Endres, K., Watzer, B., Nockher, W. A., Sommer, F., Gerber, S. y Reinhardt, C. (2020). α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 12(3), 732. https://doi.org/10.3390/nu12030732.

Toelzer, C., Gupta, K., Yadav, S. K. N., Hodgson, L., Williamson, M. K., Buzas, D., Borucu, U., Powers, K., Stenner, R., Vasileiou, K., Garzoni, F., Fitzgerald, D., Payré, C., Gautam, G., Lambeau, G., Davidson, A. D., Verkade, P., Frank, M., Berger, I. y Schaffitzel, C. (2022). The free fatty acid-binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. Science advances, 8(47), eadc9179. https://doi.org/10.1126/sciadv.adc9179.

Wan, J., Hu, S., Jacoby, J. J., Liu, J., Zhang, Y. y Yu, L. L. (2017). The impact of dietary sn-2 palmitic triacylglycerols in combination with docosahexaenoic acid or arachidonic acid on lipid metabolism and host faecal microbiota composition in Sprague Dawley rats. Food & function, 8(5), 1793–1802. https://doi.org/10.1039/c7fo00094d.

Wong, A. C., Devason, A. S., Umana, I. C., Cox, T. O., Dohnalová, L., Litichevskiy, L., Perla, J., Lundgren, P., Etwebi, Z., Izzo, L. T., Kim, J., Tetlak, M., Descamps, H. C., Park, S. L., Wisser, S., McKnight, A. D., Pardy, R. D., Kim, J., Blank, N., Patel, S., … Levy, M. (2023). Serotonin reduction in post-acute sequelae of viral infection. Cell, 186(22), 4851–4867.e20. https://doi.org/10.1016/j.cell.2023.09.013

Yan, B., Chu, H., Yang, D., Sze, K. H., Lai, P. M., Yuan, S., Shuai, H., Wang, Y., Kao, R. Y., Chan, J. F. y Yuen, K. Y. (2019). Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses, 11(1), 73. https://doi.org/10.3390/v11010073.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2024 Pinelatinoamericana

Downloads

Download data is not yet available.