Diálogo entre o intestino e a mente
HTML (Espanhol)
PDF (Espanhol)

Palavras-chave

intestino
microbiota
sinais moleculares
comportamento alimentar

Como Citar

Rovasio, R. A. (2022). Diálogo entre o intestino e a mente. Pinelatinoamericana, 2(3), 156-170. https://revistas.psi.unc.edu.ar/index.php/pinelatam/article/view/38630

Resumo

A Psico-Imuno-Neuro-Endocrinologia (PINE/PNIE) foi construída sobre os ombros de grandes pioneiros, onde a palavra integração se expande como conceito não só na área biomédica, mas também nos campos social, político, econômico e religioso. Integração como conceito de unir, incorporar e entrelaçar partes aparentemente estranhas ou divergentes para assimilá-las em um todo. Este artigo tenta difundir o conceito PINE/PNIE através de um exemplo dessa interação.

Antes do último terço do século XX ‒batismo do PINE/PNIE‒ a ideia de uma relação funcional entre intestino, cérebro e psique, teria provocado sorrisos indulgentes, limitando os de feitiçaria ou pseudociência. Hoje, pesquisas aprofundadas dissiparam dúvidas e mostraram evidências verificáveis e verificadas de "mensagens" (sinais moleculares) que viajam e interagem entre sistemas de tipos tão diferentes como os sistemas digestivo, neural e imunológico, entre outros.

O diálogo que se relata entre as células dos sistemas digestivo (e seus "inquilinos"), endócrino, nervoso central e periférico, com sua extensão para aspectos comportamentais (a "mente"), é apenas uma amostra entre muitas que, só para citar deles, excederia o espaço razoavelmente disponível.

HTML (Espanhol)
PDF (Espanhol)

Referências

Alcock, J., Maley, C. C. y Aktipis, C. A. (2014). Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays: news and reviews in molecular, cellular and developmental biology, 36(10), 940–949. https://doi.org/10.1002/bies.201400071.

Amaral, F. A., Sachs, D., Costa, V. V., Fagundes, C. T., Cisalpino, D., Cunha, T. M., Ferreira, S. H., Cunha, F. Q., Silva, T. A., Nicoli, J. R., Vieira, L. Q., Souza, D. G. y Teixeira, M. M. (2008). Commensal microbiota is fundamental for the development of inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2193–2197. https://doi.org/10.1073/pnas.0711891105.

Baraldi, M., Avallone, R., Corsi, L., Venturini, I., Baraldi, C. y Zeneroli, M. L. (2009). Natural endogenous ligands for benzodiazepine receptors in hepatic encephalopathy. Metabolic brain disease, 24(1), 81–93. https://doi.org/10.1007/s11011-008-9111-8.

Baruch, E. N., Youngster, I., Ben-Betzalel, G., Ortenberg, R., Lahat, A., Katz, L., Adler, K., Dick-Necula, D., Raskin, S., Bloch, N., Rotin, D., Anafi, L., Avivi, C., Melnichenko, J., Steinberg-Silman, Y., Mamtani, R., Harati, H., Asher, N., Shapira-Frommer, R., Brosh-Nissimov, T., … Boursi, B. (2021). Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science (New York, N.Y.), 371(6529), 602–609. https://doi.org/10.1126/science.abb5920.

Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M. C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P. y Canaider, S. (2013). An estimation of the number of cells in the human body. Annals of human biology, 40(6), 463–471. https://doi.org/10.3109/03014460.2013.807878.

Breton, J., Tennoune, N., Lucas, N., Francois, M., Legrand, R., Jacquemot, J., Goichon, A., Guérin, C., Peltier, J., Pestel-Caron, M., Chan, P., Vaudry, D., do Rego, J. C., Liénard, F., Pénicaud, L., Fioramonti, X., Ebenezer, I. S., Hökfelt, T., Déchelotte, P. y Fetissov, S. O. (2016). Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell metabolism, 23(2), 324–334. https://doi.org/10.1016/j.cmet.2015.10.017.

Camilleri, M., Toouli, J., Herrera, M. F., Kulseng, B., Kow, L., Pantoja, J. P., Marvik, R., Johnsen, G., Billington, C. J., Moody, F. G., Knudson, M. B., Tweden, K. S., Vollmer, M., Wilson, R. R. y Anvari, M. (2008). Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery, 143(6), 723–731. https://doi.org/10.1016/j.surg.2008.03.015.

Chen, C., Pande, K., French, S. D., Tuch, B. B. y Noble, S. M. (2011). An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell host & microbe, 10(2), 118–135. https://doi.org/10.1016/j.chom.2011.07.005.

Chiu, I. M., Heesters, B. A., Ghasemlou, N., Von Hehn, C. A., Zhao, F., Tran, J., Wainger, B., Strominger, A., Muralidharan, S., Horswill, A. R., Bub+eck Wardenburg, J., Hwang, S. W., Carroll, M. C. y Woolf, C. J. (2013). Bacteria activate sensory neurons that modulate pain and inflammation. Nature, 501(7465), 52–57. https://doi.org/10.1038/nature12479.

Clarke, G., Stilling, R. M., Kennedy, P. J., Stanton, C., Cryan, J. F. y Dinan, T. G. (2014). Minireview: Gut microbiota: the neglected endocrine organ. Molecular endocrinology (Baltimore, Md.), 28(8), 1221–1238. https://doi.org/10.1210/me.2014-1108.

Collins, J. M., Caputi, V., Manurung, S., Gross, G., Fitzgerald, P., Golubeva, A. V., Popov, J., Deady, C., Dinan, T. G., Cryan, J. F. y O'Mahony S. M. (2022). Supplementation with milk fat globule membrane from early life reduces maternal separation-induced visceral pain independent of enteric nervous system or intestinal permeability changes in the rat. Neuropharmacol 210, 1 Jun 2022, 109026. https://doi.org/10.1016/j.neuropharm.2022.109026.

Das U. N. (2022). Bioactive lipids in psychiatry, immunology, neurology, and endocrinology (PINE). Pinelatinoamericana 2(1), 56–81. Recuperado a partir de https://revistas.unc.edu.ar/index.php/pinelatam/article/view/370462.

Davar, D., Dzutsev, A. K., McCulloch, J. A., Rodrigues, R. R., Chauvin, J. M., Morrison, R. M., Deblasio, R. N., Menna, C., Ding, Q., Pagliano, O., Zidi, B., Zhang, S., Badger, J. H., Vetizou, M., Cole, A. M., Fernandes, M. R., Prescott, S., Costa, R., Balaji, A. K., Morgun, A., … Zarour, H. M. (2021). Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science (New York, N.Y.), 371(6529), 595–602. https://doi.org/10.1126/science.abf3363.

Duca, F. A., Swartz, T. D., Sakar, Y. y Covasa, M. (2012). Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PloS one, 7(6), e39748. https://doi.org/10.1371/journal.pone.0039748.

Eisenhofer, G., Aneman, A., Friberg, P., Hooper, D., Fåndriks, L., Lonroth, H., Hunyady, B. y Mezey, E. (1997). Substantial production of dopamine in the human gastrointestinal tract. The Journal of clinical endocrinology and metabolism, 82(11), 3864–3871. https://doi.org/10.1210/jcem.82.11.4339.

Erdmann J. (2022). How gut bacteria could boost cancer treatments. Nature, 607(7919), 436–439. https://doi.org/10.1038/d41586-022-01959-7.

Eynard A. R., Valentich M. A. y Rovasio R. A. (2016). Histología y Embriología Humanas: Bases Celulares y Moleculares con Orientación Clínico-Patológica. 5ta. Ed. Buenos Aires: Editorial Médica Panamericana.

Guarner F. (2007). Papel de la flora intestinal en la salud y en la enfermedad. Nutr Hosp 22 (Supl. 2):14-19. Recuperado en 16 de agosto de 2022, de http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112007000500003&lng=es&tlng=es.

Han, W. y de Araujo, I. E. (2021). Dissection and surgical approaches to the mouse jugular-nodose ganglia. STAR protocols, 2(2), 100474. https://doi.org/10.1016/j.xpro.2021.100474.

Han, W., Tellez, L. A., Perkins, M. H., Perez, I. O., Qu, T., Ferreira, J., Ferreira, T. L., Quinn, D., Liu, Z. W., Gao, X. B., Kaelberer, M. M., Bohórquez, D. V., Shammah-Lagnado, S. J., de Lartigue, G. y de Araujo, I. E. (2018). A Neural Circuit for Gut-Induced Reward. Cell, 175(3), 665–678.e23. https://doi.org/10.1016/j.cell.2018.08.049.

Han, W., Tellez, L. A., Rangel, M. J., Jr, Motta, S. C., Zhang, X., Perez, I. O., Canteras, N. S., Shammah-Lagnado, S. J., van den Pol, A. N. y de Araujo, I. E. (2017). Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala. Cell, 168(1-2), 311–324.e18. https://doi.org/10.1016/j.cell.2016.12.027.

Hashimoto, K. y Yang, C. (2022). Special issue on "Brain-body communication in health and diseases". Brain research bulletin, 186, 47–49. https://doi.org/10.1016/j.brainresbull.2022.05.014.

Herculano-Houzel S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience, 3, 31. https://doi.org/10.3389/neuro.09.031.2009.

Hill, A. J., Weaver, C. F. y Blundell, J. E. (1991). Food craving, dietary restraint and mood. Appetite, 17(3), 187–197. https://doi.org/10.1016/0195-6663(91)90021-j.

Human Microbiome Project Consortium (2012a). A framework for human microbiome research. Nature, 486(7402), 215–221. https://doi.org/10.1038/nature11209.

Human Microbiome Project Consortium (2012b). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234.

Kim, D. Y. y Camilleri, M. (2000). Serotonin: a mediator of the brain-gut connection. The American journal of gastroenterology, 95(10), 2698–2709. https://doi.org/10.1111/j.1572-0241.2000.03177.x.

Kortman, G. A., Boleij, A., Swinkels, D. W. y Tjalsma, H. (2012). Iron availability increases the pathogenic potential of Salmonella typhimurium and other enteric pathogens at the intestinal epithelial interface. PloS one, 7(1), e29968. https://doi.org/10.1371/journal.pone.0029968.

Ley R. (2022). The human microbiome: there is much left to do. Nature, 606(7914), 435. https://doi.org/10.1038/d41586-022-01610-5.

Lyte M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays: news and reviews in molecular, cellular and developmental biology, 33(8), 574–581. https://doi.org/10.1002/bies.201100024.

Medzhitov, R., Schneider, D. S. y Soares, M. P. (2012). Disease tolerance as a defense strategy. Science (New York, N.Y.), 335(6071), 936–941. https://doi.org/10.1126/science.1214935.

Miras, A. D. y le Roux, C. W. (2013). Mechanisms underlying weight loss after bariatric surgery. Nature reviews. Gastroenterology & hepatology, 10(10), 575–584. https://doi.org/10.1038/nrgastro.2013.119.

Monis, B., Rovasio, R. A. y Valentich, M. A. (1975). Ultrastructural characterization by ruthenium red of the surface of the fat globule membrane of human and rat milk with data on carbohydrates of fractions of rat milk. Cell and tissue research, 157(1), 17–24. https://doi.org/10.1007/BF00223228.

Njoroge, J. W., Nguyen, Y., Curtis, M. M., Moreira, C. G. y Sperandio, V. (2012). Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. mBio, 3(5), e00280-12. https://doi.org/10.1128/mBio.00280-12.

Njoroge, J. y Sperandio, V. (2012). Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infection and immunity, 80(2), 688–703. https://doi.org/10.1128/IAI.05921-11.

Oberto, M. G., y Defagó, M. D. (2022). Implicancia de la dieta en la composición y variabilidad de la microbiota intestinal: sus efectos en la obesidad y ansiedad. Pinelatinoamericana, 2(2), 137–152. Recuperado a partir de https://revistas.unc.edu.ar/index.php/pinelatam/article/view/38373.

O'Hara, A. M. y Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO reports, 7(7), 688–693. https://doi.org/10.1038/sj.embor.7400731.

Pirola, C. J., Salatino, A., Quintanilla, M. F., Castaño, G. O., Garaycoechea, M. y Sookoian, S. (2022). The influence of host genetics on liver microbiome composition in patients with NAFLD. EBioMedicine, 76, 103858. https://doi.org/10.1016/j.ebiom.2022.103858.

Raybould H. E. (2010). Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Autonomic neuroscience: basic & clinical, 153(1-2), 41–46. https://doi.org/10.1016/j.autneu.2009.07.007.

Rössler, H., Flasbeck, V., Gatermann, S. y Brüne, M. (2022). Alterations of the gut microbiota in borderline personality disorder. Journal of psychosomatic research, 158, 110942. https://doi.org/10.1016/j.jpsychores.2022.110942.

Roth, J., LeRoith, D., Collier, E. S., Weaver, N. R., Watkinson, A., Cleland, C. F. y Glick, S. M. (1985). Evolutionary origins of neuropeptides, hormones, and receptors: possible applications to immunology. Journal of immunology (Baltimore, Md.: 1950), 135(2 Suppl), 816s–819s.

Rousseaux, C., Thuru, X., Gelot, A., Barnich, N., Neut, C., Dubuquoy, L., Dubuquoy, C., Merour, E., Geboes, K., Chamaillard, M., Ouwehand, A., Leyer, G., Carcano, D., Colombel, J. F., Ardid, D. y Desreumaux, P. (2007). Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nature medicine, 13(1), 35–37. https://doi.org/10.1038/nm1521.

Sarr, M. G., Billington, C. J., Brancatisano, R., Brancatisano, A., Toouli, J., Kow, L., Nguyen, N. T., Blackstone, R., Maher, J. W., Shikora, S., Reeds, D. N., Eagon, J. C., Wolfe, B. M., O'Rourke, R. W., Fujioka, K., Takata, M., Swain, J. M., Morton, J. M., Ikramuddin, S., Schweitzer, M., … EMPOWER Study Group (2012). The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obesity surgery, 22(11), 1771–1782. https://doi.org/10.1007/s11695-012-0751-8.

Sender, R., Fuchs, S. y Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533.

Solomon G. F. (1969). Emotions, stress, the central nervous system, and immunity. Annals of the New York Academy of Sciences, 164(2), 335–343. https://doi.org/10.1111/j.1749-6632.1969.tb14048.x.

Sookoian, S., Salatino, A., Castaño, G. O., Landa, M. S., Fijalkowky, C., Garaycoechea, M. y Pirola, C. J. (2020). Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut, 69(8), 1483–1491. https://doi.org/10.1136/gutjnl-2019-318811.

Swartz, T. D., Duca, F. A., de Wouters, T., Sakar, Y. y Covasa, M. (2012). Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. The British journal of nutrition, 107(5), 621–630. https://doi.org/10.1017/S0007114511003412.

Tsavkelova, E. A., Klimova, S., Cherdyntseva, T. A. y Netrusov, A. I. (2006). Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol 42: 229-235. https://doi.org/10.1134/S000368380603001X.

Woelk, C. H. y Snyder, A. (2021). Modulating gut microbiota to treat cancer. Science (New York, N.Y.), 371(6529), 573–574. https://doi.org/10.1126/science.abg2904

Zamudio-Vázquez, V. P., Ramírez-Mayans, J. A., Toro-Monjaraz, E. M., Cervantes-Bustamante, R., Zárate-Mondragón, F., Montijo-Barrios, E., Cadena-León, J. F. y Cázares-Méndez, J. M. (2017). Importancia de la microbiota gastrointestinal en pediatría. Acta Pediatr Mex, 38(1), 49-62. https://doi.org/10.18233/apm1no1pp49-621323.

Zhang, T., Perkins, M. H., Chang, H., Han, W. y de Araujo, I. E. (2022). An inter-organ neural circuit for appetite suppression. Cell, 185(14), 2478–2494.e28. https://doi.org/10.1016/j.cell.2022.05.007.

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Pinelatinoamericana

Downloads

Download data is not yet available.