Sustratos neuroanatómicos y funcionales del córtex prefrontal medial

Contenido principal del artículo

Jorge Alexander Ríos Flórez

Resumen

Este artículo se presenta como una revisión que buscó integrar el conocimiento actualizado que se tiene sobre los sustratos neuroanatómicos y morfológicos de los circuitos funcionales que el córtex prefrontal medial (mPFC) establece con otras estructuras cerebrales. Diversas investigaciones han descrito las proyecciones emergentes y/o convergentes del mPFC, principalmente tomando como modelo de estudio a los roedores; empleándose la técnica de marcador neuronal como principal técnica de indagación de tales proyecciones, seguido de trabajos que proponen electrofisiografía para develar la conectividad cerebral. Así, se ha descrito la interacción del mPFC con otras estructuras encefálicas, entre las que se destacan principalmente el hipocampo, la sustancia gris periacueductal, el hipotálamo, el núcleo accumbens, la amígdala cerebral, el área tegmental ventral, el núcleo dorsal de Rafe y la habénula lateral del epitálamo, entre otras. Estas investigaciones han ido más allá del componente físico de la conectividad encefálica, extrapolando y posibilitando la comprensión funcional de las vías anatómicas establecidas entre las diferentes regiones interrelacionadas con el mPFC, develando la actividad cognitivo-comportamental de los sujetos de estudio.

Detalles del artículo

Cómo citar
Sustratos neuroanatómicos y funcionales del córtex prefrontal medial. (2019). Revista Argentina De Ciencias Del Comportamiento, 10(3), 43-53. https://doi.org/10.32348/1852.4206.v10.n3.20619
Sección
Revisiones
Biografía del autor/a

Jorge Alexander Ríos Flórez, Universidade Federal do Rio Grande do Norte. Grupo de Investigación en Neurociencias Hippocampus

Docente-Investigador. Director del Grupo de Investigación en Neurociencias Hippocampus; Psicólogo, Universidad Pontificia Bolivariana, Especialista en Evaluación y Diagnóstico Neuropsicológico, Magíster en Neuropsicología clínica, Universidad de San Buenaventura, Bogotá, D.C., Colombia. Miembro del Grupo Psicología, Educación y Cultura de la Institución Universitaria Politécnico Grancolombiano. Doctorando en Psicobiología, Universidade Federal do Rio Grande do Norte, Brasil.

Cómo citar

Sustratos neuroanatómicos y funcionales del córtex prefrontal medial. (2019). Revista Argentina De Ciencias Del Comportamiento, 10(3), 43-53. https://doi.org/10.32348/1852.4206.v10.n3.20619

Referencias

Albert, P., Vahid-Ansari, F., & Luckhart, C. (2014). Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre and postsynaptic 5-HT1A receptor expression. Frontiers in Behavioral Neuroscience, 8, 199. doi: 10.3389/fnbeh.2014.00199

Allsop, S., Vander Weele, C., Wichmann, R., & Tye, K. (2014). Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in Behavioral Neuroscience, 8, 241. doi: 10.3389/fnbeh.2014.00241

Anderson, D. (2012). Optogenetics, sex and violence in the brain: implications for psychiatry. Biological Psychiatry, 71(12), 1081–1089. doi: 10.1016/j.biopsych.2011.11.012

Ardila, A., & Rosselli, M. (2007). Neuropsicología Clínica. México: Manual Moderno.

Avale, M., Chabout, J., Pons, S., Serreau, P., De Chaumont, F., Olivo-Marin, J., … Granon, S. (2011). Prefrontal nicotinic receptors control novel social interaction between mice. FASEB Journal, 25(7), 2145–2155. doi: 10.1096/fj.10-178558

Baarendse, P., Counotte, D., O`Donnell, P., & Vanderschuren, L. (2013). Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacology, 38(8), 1485-1494. doi:

10.1038/npp.2013.47

Baker, P., Oh, S., Kidder, K., & Mizumori, S. (2015). Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Frontiers in Behavioral Neuroscience, 9, 295. doi: 10.3389/fnbeh.2015.00295

Bannerman, D., Matthews, P., Deacon, R., & Rawlins, J. (2004). Medial septal lesions mimic effects of both selective dorsal and ventral hippocampal lesions. Behavioral Neuroscience, 118(5), 1033-1041. doi: 10.1037/0735-7044.118.5.1033

Barbas, H. (1995). Anatomic basis of cognitiveemotional interactions in the primate prefrontal cortex. Neuroscience Biobehavioral Review, 19(3), 499–510. doi: 10.1016/0149-7634(94)00053-4

Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52(5), 319–330. doi: 10.1016/S0361-9230(99)00245-2

Bicks, L., Koike, H., Akbarian, S., & Morishita, H. (2015). Prefrontal cortex and social cognition in mouse and man. Frontiers in Psychology, 6, 1805. doi: 10.3389/fpsyg.2015.01805

Challis, C., Beck, S., & Berton, O. (2014). Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Frontiers in Behavioral Neuroscience, 8, 43. doi: 10.3389/fnbeh.2014.00043

Challis, C., & Berton, O. (2015). Top-down control of serotonin systems by the prefrontal cortex: a path toward restored socioemotional function in depression. ACS Chemical Neuroscience, 6(7), 1040–1054. doi: 10.1021/acschemneuro.5b00007

Chang, C., & Grace, A. (2016). Inhibitory modulation of orbitofrontal cortex on medial prefrontal cortex– amygdala information flow. Cerebral Cortex, 28(1), 1-8. doi: 10. 1093/cercor/bhw342

Chang, C., & Ho, T. (2017). Inhibitory modulation of medial prefrontal cortical activation on lateral orbitofrontal cortex–amygdale information flow. The Jornal of Physiology, 595(17), 6065-6067. doi: 10.1113/JP274568

Choi, G., Dong, H., Murphy, A., Valenzuela, D., Yancopoulos, G., Swanson, L., & Anderson, D. (2005). Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron, 46(4), 647–660. doi: 10.1016/j.neuron.2005.04.011

Churchwell, J., & Kesner, R. (2011). Hippocampalprefrontal dynamics in spatial working memory: interactions and independent parallel processing. Behavioral Brain Research, 225(2), 389–395. doi: 10.1016/j.bbr.2011.07.045

Corcoran, K., & Quirk, G. (2007). Activity in Prelimbic Cortex Is Necessary for the Expression of Learned, But Not Innate, Fears. Journal of Neuroscience, 27(4), 840-844. doi: 10.1523/JNEUROSCI.5327-06.2007

Ernst, M., & Fudge, J. (2009). A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience Biobehavioral Reviews, 33(3), 367-382. doi: 10.1016/j.neubiorev.2008.10.009

Euston, D., Gruber, A., & McNaughton, B. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057–1070. doi: 10.1016/j.neuron.2012.12.002

Finlay, J., Dunham, G., Isherwood, A., Newton, C., Nguyen, T., Reppar, P., … Greene, R. (2015). Effects of prefrontal cortex and hippocampal NMDA NR1-subunit deletion on complex cognitive and social behaviors. Brain Research, 1600, 70–83. doi: 10.1016/j.brainres.2014.10.037

Floyd, N., Price, J., Ferry, A., Keay, K., & Bandler, R. (2000). Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. The Journal of Comparative Neurology, 422(4), 556-578. doi: 10.1002/1096-

9861(20000710)422:4<556::AID-CNE6>3.0.CO;2-U

Floyd, N., Price, J., Ferry, A., Keay, K., & Bandler, R. (2001). Orbitomedial prefrontal cortical projections to hypothalamus in the rat. The Journal of Comparative Neurology, 432(3), 307-328. doi: 10.1002/cne.1105

Franklin, T., Silva, B., Perova, Z., Marrone, L., Masferrer, M., Zhan, Y., ... Gross, C. (2017). Prefrontal cortical control of a brainstem social behavior circuit. Natural Neuroscience, 20(2), 260–270. doi: 10.1038/nn.4470

Gabbott, P., Warner, T., Jays, P., Salway, P., & Busby, S. (2005). Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. The Journal of Comparative Neurology, 492(2), 145–177. doi: 10.1002/cne.20738

Goldman-Rakic, P. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. En:

Mountcastle, V., Plum, F., & Geiger, S. (Eds.), Handbook of physiology: section 1: The nervous system. Volume V: Higher functions of the brain (pp. 373–417). Bethesda, MD: American Physiological Society.

Goldman-Rakic, P. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485. doi: 10.1016/0896-6273(95)90304-6

Gonçalves, L., Nogueira, M., Shammah-Lagnado, S., & Metzger, M. (2009). Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Research Bulletin, 78(4-5), 240–247. doi: 10.1016/j.brainresbull.2008.11.012

Groenewegen, H., & Uylings, H. (2000). The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progress in Brain Research, 126, 3–28. doi: 10.1016/S0079-6123(00)26003-2

Gruber, A., & McDonald, R. (2012). Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Frontiers in Behavioral Neuroscience, 6(50), 1-26. doi: 10.3389/fnbeh.2012.00050.

Hamani, C., Machado, D., Hipólide, D., Dubiela, F., Suchecki, D., Macedo, C., & Nobrega, J. (2012). Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biological Psychiatry, 71(1), 30–35. doi: 10.1016/j.biopsych.2011.08.025

Han, X., Jing, M., Zhao, T., Wu, N., Song, R., & Li, J. (2017). Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metabolic Brain Disease, 32(5), 1503-1505. doi: 10.1007/s11011-017-0023-3

Herry, C., Ciocchi, S., Senn, V., Demmou, L., Müller, C., & Lüthi, A. (2008). Switching on and off fear by distinct neuronal circuits. Nature, 454(7204), 600–606. doi: 10.1038/nature07166

Herving, M., Hvid, N., Bredo, N., Rydbirk, R., Vestergaard, M., Hay-Schmidt, A., (…) Aznar, S. (2017). Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during noveltyexposure. Behavioral Brain Research, 326, 1-12. doi: 10.1016/j.bbr.2017.02.050

Hoover, W., & Vertes, R. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure & Function, 212(2), 149-179. doi: 10.1007/s00429-007-0150-4

Jin, J., & Maren, S. (2015). Fear Renewal Preferentially activates ventral hippocampal neurons projecting to both amygdale and prefrontal cortex in rats. Scientific Reports, 5, 8388. doi: 10.1038/srep08388

Johansen, J., Tarpley, J., LeDoux, J., & Blair, H. (2010). Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Natural Neuroscience, 13(8), 979-986. doi: 10.1038/nn.2594

Kim, E., Horovitz, O., Pellman, B., Tan, L., Li, Q., Richterlevin, G., & Kim, J. (2013). Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proceedings of the National Academy of Sciences of the Unites States of America, 110(36), 14795-14800. doi: 10.1073/pnas.1310845110

Knapska, E., Macias, M., Mikosz, M., Nowak, A., Owczarek, D., Wawrzyniak, M., … Kaczmarek, L. (2012). Funtional anatomy of neural circuits regulating fear and extinction. Proceedings of the National Academy of Science of the United States of America, 109(42), 17093-17098. doi: 10.1073/pnas.1202087109

Ko, J. (2017). Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Frontiers in Neural Circuits, 11(41), 1-16. doi: 10.3389/fncir.2017.00041

Kogan, J., Frankland, P., & Silva, A. (2000). Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus, 10(1), 47–56. doi: 10.1002/(SICI)1098-1063(2000)10:1<47::AIDHIPO5>3.0.CO;2-6

Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research Reviews, 8(1), 65–98. doi: 10.1016/0165-0173(84)90018-3

Lecourtier, L., Defrancesco, A., & Moghaddam, B. (2008). Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. The European Journal of Neuroscience, 27(7), 1755–1762. doi: 10.1111/j.1460-9568. 2008.06130.x

Lecourtier, L., Neijt, H., & Kelly, P. (2004). Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. The European Journal of Neuroscience, 19(9), 2551–2560. doi:10.1111/j.0953-816x.2004.03356.x

Likhtik, E., Stujenske, J., Topiwala, M., Harris, A., & Gordon, J. (2014). Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Natural Neuroscience, 17(1), 106–113. doi: 10.1038/nn.3582

Mahar, I., Bambico, F., Mechawar, N., & Nobrega, J. (2014). Stress, serotonin and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience Biobehavioral Review, 38, 173–192. doi: 10.1016/j.neubiorev.2013.11.009

Marek, R., Strobel, C., Bredy, T., & Sah, P. (2013). The amygdala and medial prefrontal cortex: partners in the fear circuit. Journal of Physiology, 591(10), 2381–2391. doi: 10.1113/jphysiol.2012.248575

McNally, G., Johansen, J., & Blair, H. (2011). Placing prediction into the fear circuit. Trends in Neuroscience, 34(6), 283–292. doi:

10.1016/j.tins.2011.03.005

Michelsen, K., Prickaerts, J., & Steinbusch, H. (2008). The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Progress in Brain Research, 172, 233–264. doi: 10.1016/S0079-6123(08)00912-6

Milad, M., & Quirk, G. (2012). Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 63(1), 129- 151. doi: 10.1146/annurev.psych.121208.131631

Nakamura, K. (2013). The role of the dorsal Raphé nucleus in reward-seeking behavior. Frontiers in integrative Neuroscience, 7, 60. doi: 10.3389/fnint.2013.00060

Narayanan, N., & Laubach, M. (2017). Inhibitory Control: Mapping Medial Frontal Cortex. Current Biology, 27(4), R148-R150. doi: 10.1016/j.cub.2017.01.010 Neafsey, E. (1990). Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Progress in Brain Research, 85, 147–166. doi: 10.1016/S0079-6123(08)62679-5

Okuyama, T., Kitamura, T., Roy, D., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science, 353(6307), 1536–1541. doi: 10.1126/science.aaf7003

Orsini, C., Kim, J., Knapska, E., & Maren, S. (2011). Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. The Journal of Neuroscience, 31(47), 17269-17277. doi: 10.1523/JNEUROSCI.4095-

11.2011

Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6ta Ed.). UK: Elsevier, Academic Press.

Penzo, M. A., Robert, V., & Li, B. (2014). Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. The Journal of Neuroscience, 34, 2432–2437. doi: 10.1523/JNEUROSCI.416613.2014

Petreanu, L., Huber, D., Sobczyk, A., & Svoboda, K. (2007). Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Natural Neuroscience, 10(5), 663–668. doi: 10.1038/nn1891

Quirk, G., & Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology, 33(1), 56–72. doi: 10.1038/sj.npp.1301555

Rempel-Clower, N. (2007). Role of orbitofrontal cortex connections in emotion. Annals of the New York Academy of Sciences, 1121(1), 72–86. doi: 10.1196/annals.1401.026

Riga, D., Matos, M., Glas, A., Smit, A., Spijker, S., & Van den Oever, M. (2014). Optogenetic dissection of medial prefrontal cortex circuitry. Frontiers in Systems Neuroscience, 8, 230. doi: 10.3389/fnsys.2014.00230

Roberts, A., Tomic, D., Parkinson, C., Roeling, T., Cutter, D., Robbins, T., & Everitt, B. (2007). Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): an anterograde and retrograde tract-tracing study. The Journal of Comparative Neurology, 502(1), 86-112. doi: 10.1002/cne.21300

Sabihi, S., Dong, S., Durosko, N., & Leuner, B. (2014). Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Frontiers in Behavioral Neuroscience, 8, 258. doi: 10.3389/fnbeh.2014.00258

Sabihi, S., Durosko, N., Dong, S., & Leuner, B. (2014). Oxytocin in the prelimbic medial prefrontal cortex reduces anxiety-like behavior in female and male rats. Psychoneuroendocrinology, 45, 31–42. doi: 10.1016/j.psyneuen.2014.03.009

Schmidt, K., Schroeder, J., Foster, S., Squires, K., Smith, B., Pitts, E., (…) Weinshenker, D. (2017). Norepinephrine regulates cocaine-primed reinstatement via a1-adrenergic receptors in the medial prefrontal cortex. Neuropharmacology, 119, 134-140. doi: 10.1016/j.neuropharm.2017.04.005

Sego, C., Gonçalves, L., Lima, L., Furigo, I., Donato, J., & Metzger, M. (2014). Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. The Journal of Comparative Neurology, 522(7), 1454–1484. doi: 10.1002/cne.23533

Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G. (2011). Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear. Neuropsychopharmacology, 36(1), 529–538. doi: 10.1038/npp.2010.184

Siviy, S., & Panksepp, J. (2011). In search of the neurobiological substrates for social playfulness in mammalian brains. Neuroscience Biobehavioral Reviews, 35(9), 1821–1830. doi: 10.1016/j.neubiorev.2011.03.006

Sotres-Bayon, F., & Quirk, G. (2010). Prefrontal control of fear: more than just extinction. Current Opinion in Neurobiology, 20(2), 231–235. doi: 10.1016/j.conb.2010.02.005

Tottenham, N. (2015). Social scaffolding of human amygdala-mPFC circuit development. Social Neuroscience, 10(5), 489–499. doi:

10.1080/17470919.2015.1087424

Tovote, P., Fadok, J., & Luthi, A. (2015). Neuronal circuits for fear and anxiety. Natural Review in Neuroscience, 16(6), 317–331. doi: 10.1038/nrn3945

Trezza, V., Baarendse, P., & Vanderschuren, L. (2010). The pleasures of play: pharmacological insights into social reward mechanisms. Trends in Pharmacological Science, 31(10), 463–469. doi: 10.1016/j.tips.2010.06.008

Tye, K., & Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Natural Review of Neuroscience, 13(4), 251–266. doi: 10.1038/nrn3171

van Kerkhof, L., Damsteegt, R., Trezza, V., Voorn, P., & Vanderschuren, L. (2013). Functional integrity of the habenula is necessary for social play behavior in rats. The European Journal of Neuroscience, 38(10), 3465–3475. doi: 10.1111/ejn.12353

Vázquez-Borsetti, P., Cortes, R., & Artigas, F. (2009). Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cerebral Cortex, 19(7), 1678–1686. doi: 10.1093/cercor/bhn204

Veerakumar, A., Challis, C., Gupta, P., Da, J., Upadhyay, A., Beck, S., & Berton, O. (2014). Antidepressantlike effects of cortical deep brain stimulation coincide with pro-neuroplastic adaptations of serotonin systems. Biological Psychiatry, 76(3), 203–212. doi: 10.1016/j.biopsych.2013.12.009

Vertes, R. (2004). Differential Projections of the Infralimbic and Prelimbic Cortex in the Rat. Journal SYNAPSE, 51(1); 32–58. doi: 10.1002/syn.10279

Wang, Q., Jin, J., & Maren, S. (2016). Renewal of extinguished fear activates ventral hippocampal neurons projecting to the prelimbic and infralimbic cortices in rats. Neurobiology of Learning and Memory, 134(A), 38-43. doi: 10.1016/j.nlm.2016.04.002

Waxman, S. (2010). Clinical Neuroanatomy. México: McGraw Hill. Zelikowsky, M., Bissierec, S., Hasta, T., Bennetta, R., Abdipranotod, A., Visseld, B., & Fanselow, M. (2013). Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proceedings of the National Academy of Sciences of the Unites States of America, 110(24), 9938–9943. doi: 10.1073/pnas.1301691110

Zelikowsky, M., Bissierec, S., Hasta, T., Bennetta, R., Abdipranotod, A., Visseld, B., & Fanselow, M. (2013). Prefrontal microcircuit underlies contextual learning after hippocampal loss. Proceedings of the National Academy of Sciences of the Unites States of America, 110(24), 9938–9943. doi: 10.1073/pnas.1301691110