Spatial learning and geometry. Amphibians in the evolution of the brain cognitive systems

Main Article Content

María Inés Sotelo
Rubén Néstor Muzio

Abstract

This article presents a comparative review of the works that have studied the spatial learning in vertebrates using geometry information and visual cues from the environment. We describe experiments conducted in our laboratory showing spatial navigation learning in amphibians and their dependence on a functional medial pallium (homologous area to the mammalian hippocampus). The results indicate that these animals use both the information provided by the geometry as visual cues, but when both types of reference are presented in conflict they prefer geometry to orient (as results found in amniotes). Broadly, these findings suggest that the ability to orient in space is a characteristic evolutionarily preserved and support the idea that the role of the hippocampus in spatial cognition precedes the evolution of fully terrestrial vertebrates.

Article Details

How to Cite
Spatial learning and geometry. Amphibians in the evolution of the brain cognitive systems. (2015). Argentinean Journal of Behavioral Sciences, 7(3), 64-78. https://doi.org/10.32348/1852.4206.v7.n3.11370
Section
Reviews
Author Biographies

María Inés Sotelo, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental

Grupo de Aprendizaje y Cognición Comparada, Laboratorio de Biología del Comportamiento, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina 

y

Cátedra de Biología del Comportamiento e Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina

Rubén Néstor Muzio, Universidad de Buenos Aires. Facultad de Psicología. Cátedra de Biología del Comportamiento e Instituto de Investigaciones

Director Grupo de Aprendizaje y Cognición Comparada, Laboratorio de Biología del Comportamiento, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina. Investigador Independiente CONICET 

y

Profesor Asociado Regular, Cátedra de Biología del Comportamiento e Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina

How to Cite

Spatial learning and geometry. Amphibians in the evolution of the brain cognitive systems. (2015). Argentinean Journal of Behavioral Sciences, 7(3), 64-78. https://doi.org/10.32348/1852.4206.v7.n3.11370

References

Adler, K. (1980). Individuality in the use of orientation cues by green frogs. Animal Behaviour, 28(2), 413-425. doi: 10.1016/S0003-3472(80)80050-9

Anderson, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007). The hippocampal formation. In P. Anderson, R. Morris, D. Amaral, T. Bliss & J. O´Keefe (Eds.), The hippocampus book (1st. ed. pp.3 -8). New York: Oxford University Press.

Bingman, V. P., Hough II, G. E., Kahn, M. C., & Siegel, J. J. (2003). The homing pigeon hippocampus and space: In search of adaptive specialization. Brain, Behavior and Evolution, 62(2), 117-127. doi: 10.1159/000072442

Bingman, V. P., Jechura, T., & Kahn, M. C. (2006). Behavioral and neural mechanisms of homing and migration in birds. In M. F. Brown & R. G. Cook (Eds.), Animal Spatial Cognition: Comparative, Neural, and Computational Approaches. Recuperado de http://www.pigeon.psy.tufts.edu/asc/Bingman

Bingman, V. P., Salas, C., & Rodríguez, F. (2009). Evolution of the Hippocampus. In M. Binder, N. Hirokawa & U. Windhorst (Eds.),

Encyclopaedia of Neuroscience (pp. 1356-1360). Berlin: Springer-Verlag.

Bingman, V. P., & Sharp, P. E. (2006). Neuronal implementation of hippocampal-mediated spatial behavior: A comparative-evolutionary perspective. Behavioral and Cognitive Neuroscience Reviews, 5(2), 80-91. doi: 10.1177/1534582306289578

Brattstrom, B. H. (1990). Maze learning in the fire-bellied toad, Bombina orientalis. Journal of Herpetology, 24(1), 44-47. doi: 10.2307/1564288

Brown, A. A., Spetch, M. L., & Hurd, P. L. (2007). Growing in circles: Rearing environment alters spatial navigation in fish. Psychological Science, 18(7), 569-573. doi: 10.1111/j.1467-9280.2007.01941.x

Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149-178.

Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years on research on the use of geometry in spatial orientation: A current theoretical perspective. Psychonomic Bulletin and Review, 20, 1033-1054.

Cheng, K., Narendra, A., Sommer, S., & Wehner, R. (2009). Traveling in clutter: Navigationin the Central Australian desert ant Melophorus bagoti. Behavioural Processes, 80(3), 261-268. doi: 10.1016/j.beproc.2008.10.015

Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A., & Wehner, R. (2014). Beginnings of a synthetic approach to desert ant navigation. Behavioural Processes, 102, 51-61. doi: 10.1016/j.beproc.2013.10.001

Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychologial Bulletin, 133(4), 625-637. doi: 10.1037/0033-2909.133.4.625

Colombo, M., & Broadbent, N. (2000). Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neuroscience and Biobehavioral Reviews, 24(4), 465-484. doi: 10.1016/S0149-7634(00)00016-6

Crane, A., & Mathis, A. (2011). Landamark learning by the Ozark zigzag salamander Plethodon angusticlavius. Current Zoology, 57(4), 485-490.

Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125(3), 296-307. doi 10.1037/a0024242.

Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2015a). Use of local visual landmarks for spatial orientation in toads (Rhinella arenarum): The role of distance to a goal. Journal of Comparative Psychology, 129(3), 247-255. doi: 10.1037/a0039461

Daneri, M. F., Casanave, E. B. & Muzio, R. N. (2015b). Medial Pallium lesion affects both turn and cue spatial learning in terrestrial toads (Rhinella arenarum). Manuscrito en preparacion.

Daneri, M. F., & Muzio, R. N. (2013). El aprendizaje espacial y su relevancia en anfibios. Revista Argentina de Ciencias del Comportamiento, 5(3), 38-49.

Daneri, M. F., Papini, M. R., & Muzio, R. N. (2007). Common toads (Bufo arenarum) learn to anticipate and avoid hypertonic saline solutions. Journal of Comparative Psychology, 121(4), 419-427. doi: 10.1037/0735-7036.121.4.419

Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909-5914. doi: 10.1073/pnas.0711433105

Gallistel, C. R. (1990). The Organization of Learning. Cambridge, MA: MIT Press.

Heiligenberg, W. (1991). Neural Nets in Electric Fish. Cambridge, MA: MIT Press.

Huttenlocher, J., & Lourenco, S. F. (2007). Coding location in enclosed spaces: Is geometry the principle? Developmental Science, 10(6), 741-746. doi: 10.1111/j.1467-7687.2007.00609.x

Kamil, A. C., & Balda, R. P. (1985). Cache recovery and spatial memory in Clark’s nutcrackers (Nucifraga colombiana). Journal of Experimental Psychology: Animal Behavior Processes, 11, 95-111.

Laberge, F., Feldhoff, R. C., Feldhoff, P. W., & Houck, L. D. (2008). Courtship pheromone-induced c-Fos-like immunolabeling in the female salamander brain. Neuroscience, 151(2), 329-339. doi: 10.1016/j.neuroscience.2007.11.006

Lee, S. A., & Spelke, E. S. (2010). Two systems of spatial representation underlying navigation. Experimental Brain Research, 206(2), 179-188. doi: 10.1007/s00221-010-2349-5

Lopez, J. C., Vargas, J. P., Gomez, Y., & Salas, C. (2003). Spatial and non-spatial learning in turtles: The role of medial cortex. Behaviorual Brain Research, 143(2), 109-120. doi: 10.1016/S0166-4328(03)00030-5

Miller, N. Y., & Shettleworth, S. J. (2008). An associative model of geometry learning: A modified choice rule. Journal of Experimental Psychology: Animal Behavior Processes, 34(3), 419-422. doi: 10.1037/0097-7403.34.3.419

Moreno, N., & González, A. (2004). Localization and Connectivity of the Lateral Amygdala in Anuran Amphibians. The Journal of Comparative Neurology, 479(2), 130-148. doi: 10.1002/cne.20298

Muzio, R. N. (1999). Aprendizaje instrumental en anfibios. Revista Latinoamericana de Psicología, 31(1), 35-47.

Muzio, R. N. (2013). Aprendizaje en anfibios, el eslabon perdido: Un modelo simple cerebral en el estudio de conductas complejas. Cuadernos de Herpetología, 27(2), 87-100.

Muzio, R. N., Pistone Creydt, V., Iurman, M., Rinaldi, M., Sirani, B., & Papini, M. R. (2011). Incentive or Habit Learning in Amphibians? PLoS One 6(11): e25798. doi: 10.1371/journal.pone.0025798.

Muzio, R. N., Ruetti, E., & Papini, M. R. (2006). Determinants of instrumental extinction in terrestrial toads (Bufo arenarum). Learning and Motivation, 37(4), 346-356. doi: 10.1016/j.lmot.2005.12.003

Muzio, R. N., Segura, E. T., & Papini, M. R. (1992). Effect of schedule and magnitude of reinforcement on instrumental acquisition and extinction in the toad, Bufo arenarum. Learning and Motivation, 23, 406-429.

Muzio, R. N., Segura, E. T., & Papini, M. R. (1993). Effects of lesions in the medial pallium on instrumental learning in the toad (Bufo arenarum). Physiology and Behavior, 54(1), 185-188. doi: 10.1016/0031-9384(93)90064-M

Nardi, D., & Bingman, V. P. (2007). Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behavioural Brain Research, 178(1), 160-171. doi: 10.1016/j.bbr.2006.12.010

Nardi, D., Newcombe, N. S., & Shipley, T. F. (2013). Reorienting with terrain slope and landmarks. Memory and Cognition, 41(2), 214-228. doi: 10.3758/s13421-012-0254-9

Neal, J. K., & Wade, J. (2007). Effects of season, testosterone and female esposure on c-Fos expression in the preoptic area and amygdala of male green anoles. Brain Research, 1166, 124-131.

Neary, T. J. (1984). Anterior thalamic nucleus projections to the dorsal pallium in ranid frogs. Neuroscience Letters, 51(2), 213-218. doi: 10.1016/0304-3940(84)90553-6

Newcombe, N. S., Ratliff, K. R., Shallcross, W. L., & Twyman, A. D. (2010). Young children’s use of features to reorient is more than just associative: Further evidence against a modular view of spatial processing. Developmental Science, 13(1), 213-220. doi: 10.1111/j.1467-7687.2009.00877.x

Northcutt, R. G. (1974). Some histochemical observations on the telencephalon of the bullfrog, Rana catesbeiana Shaw. Journal of Comparative Neurology, 157(4), 379-390. doi: 10.1002/cne.901570403

Northcutt, R. G., & Kicliter, E. (1980). Organization of the amphibian telencephalon. In S. O. E. Ebbesson (Eds.), Comparative neurology of the telencephalon (pp. 203-255). New York: Plenum. doi: 10.1007/978-1-4613-2988-6_8

Northcutt, R. G., & Ronan, M. (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain, Behavior and Evolution, 40(1), 1-16. doi: 10.1159/000113898

Northcutt, R. G., & Royce, G. J. (1975). Olfactory bulb projections in the bullfrog Rana catesbeiana. Journal of Morphology, 145(3), 251-268.

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175. doi: 10.1016/0006-8993(71)90358-1

O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

Papini, M. R. (2009). Psicologia comparada. Evolución y desarrollo del comportamiento. Bogotá, Colombia: Editorial Manual Moderno.

Papini, M. R., Muzio, R. N., & Segura, E. T. (1995). Instrumental learning in toads (Bufo arenarum): Reinforcer magnitude and the medial pallium. Brain, Behavior and Evolution, 46(2), 61-71. doi: 10.1159/000113259

Papini, M. R., Salas, C., & Muzio, R. N. (1999). Análisis comparativo del aprendizaje en vertebrados. Revista Latinoamericana de Psicología, 31(1), 15-34.

Papp, G., Witter, M. P., & Treves, A. (2007). The CA3 network as a memory storage for spatial representation. Learning and Memory, 14, 732-744. doi: 10.1101/lm.687407

Pecchia, T., & Vallortigara, G. (2010). Reorienting strategies in a rectangular array of landmarks by domestic chicks (Gallus gallus). Journal of Comparative Psychology, 124(2), 147-158. doi: 10.1037/a0019145

Pravosudov, V. V., & Clayton, N. S. (2002). A test of the adaptive specialization hypothesis: population differences in caching, memory and the hippocampus in black-capped chickadees (Poecile atricapilla). Behavioral Neuroscience, 116(4), 515-522. doi: 10.1037/0735-7044.116.4.515

Puddington, M. M., & Muzio, R. N. (2013). Análisis comparado del aprendizaje aversivo en anfibios. Revista Argentina de Ciencias del Comportamiento, 5(3), 50-63.

Puddington, M. M., Papini, M. R., & Muzio, R. N. (2013). Vulnerability of long-term memory to temporal delays in amphibians. Behavioural Processes, 99, 7-11. doi: 10.1016/j.beproc.2013.05.010

Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive combination view. Psychological Science, 19(12), 1301-1307. doi: 10.1111/j.1467-9280.2008.02239.x

Rescorla, R. A., & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcment and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current theory and research (pp. 64-99). New York: Appleton-Century-Crofts.

Rodríguez, R., Lopez, J. C., Vargas, J. P., Gomez, Y., Broglio, C. & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. Journal of Neuroscience, 22(7), 2894-2903.

Roth, G., Grunwald, W., & Dicke, U. (2003). Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. The Journal of Comparative Neurology, 461(1), 91-110.

Salas, C., Broglio, C., & Rodríguez, F. (2003). Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity. Brain, Behavior and Evolution, 62(2), 72-82. doi: 10.1159/000072438

Scoville, W. B., & Milner, B. (1957). Loss of Recent Memory After Bilateral Hippocampal Lesions. The Journal of Neurology, Neurosurgery and Psychiatry, 20(1), 11-21. doi: 10.1136/jnnp.20.1.11

Sheynikhovich, D., Chavarriaga, R., Strösslin, T., Arleo, A., & Gerstner, W. (2009). Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychological Review, 116(3), 540-566. doi: 10.1037/a0016170

Sinsch, U. (2006). Orientation and navigation in Amphibia. Marine and Freshwater Behavior and Physiology, 39(1), 65-71. doi: 10.1080/10236240600562794

Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015a). Goal orientation by geometric and feature cues: spatial learning in the terrestrial toad Rhinella arenarum. Animal Cognition, 18(1), 315- 323. doi: 10.1007/s10071-014-0802-8.

Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015b). Neural activity associated to spatial learning based on geometric and feature cues in the terrestrial toad Rhinella arenarum. Manuscrito en preparacion

Sturz, B. R., Gurley, T., & Bodily, K. D. (2011). Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37(2), 246-253. doi: 10.1037/a0021215

Stürzl, W., Cheung, A., Cheng, K., & Zeil, J. (2008). Information content of panoramic images: I. Rotational errors and the similarity of views in rectangular arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34(1), 1-14. doi: 10.1037/0097-7403.31.1.1

Thiele, J., & Winter, Y. (2003). Hierarchical strategy for relocating food targets in flower bats: Spatial memoray vs. cue-directed search. Animal Behaviour, 69, 315-327. doi: 10.1016/j.anbehav.2004.05.012

Twyman, A. N. D., Newcombe, N. S., & Gould, T. G. (2013). Malleability in the development of spatial orientation. Developmental Psychology, 55, 243-253. doi: 10.1002/dev.21017

Vargas, J. P., Bingman, V. P., Portavella, M., & Lopez, J. C. (2006). Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 24(10), 2870-2878. doi: 10.1111/j.1460-9568.2006.05174.x

Vargas, J. P., Lopez, J. C., Salas, C., & Thinus- Blanc, C. (2004). Encoding of geometrical and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118(2), 206-216.

Westhoff, G., & Roth, G. (2002). Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordani. The Journal of Comparative Neurology, 445(2), 97-121.

Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27(3), 623-633. doi: 10.1016/S0896-6273(00)00071-4

Wystrach, A. (2009). Ants in rectangular arenas: A support for the global matching theory. Communicative & Integrative Biology, 2(5), 388-390. doi: 10.4161/cib.2.5.8717

Wystrach, A., & Beugnon, G. (2009). Ants learn geometry and features. Current Biology, 19(1), 61-66. doi: 10.1016/j.cub.2008.11.054

Wystrach, A., Cheng, K., Sosa, S., & Beugnon, G. (2011). Geometry, features and panoramic views: Ants in rectangular arenas. Journal of Experimental Psychology. Animal Behaviour Processes, 37(4), 420-435. doi: 10.1037/a0023886