Effect of haloperidol on consummatory successive positive contrast in adult rats with adolescent isolation

Main Article Content

Lucas Cuenya
Matías Serafini
Alba Mustaca
Giselle Kamenetzky

Abstract

Rats exposed to adolescent isolation (AA) show neurological and behavioral disorders into adulthood, many of them related to changes in response to appetitive reinforcers. Previous studies showed an increase of consummatory Successive Positive Contrast(cSPC, i.e., increased consumption of 32% sugar solution, 24 hours after having access to 4% solution) in rats exposed to AA, in comparison to animals without AA. This study aim at evaluating whether this effect is associated with dopaminergic hyperactivity. Haloperidol (0.1 mg / kg, i.p.) was administered before animals with AA were exposed to the presentation of the increased solution (4% to 32%), while saline was administered to the control group. cSPC effect was not observed in animals receiving haloperidol, while a one trial positive contrast was expressed in animals receiving saline. These results confirm the proposed hypothesis. Although the results are promising, further experiments are needed to determine more precisely the neurochemical correlate of increased cSPC in animals with AA.

Article Details

How to Cite
Effect of haloperidol on consummatory successive positive contrast in adult rats with adolescent isolation. (2015). Argentinean Journal of Behavioral Sciences, 7(2), 30-37. https://doi.org/10.32348/1852.4206.v7.n2.9482
Section
Original Articles
Author Biography

Lucas Cuenya, Universidad de Buenos Aires. Instituto de Investigaciones Médicas. Laboratorio de Psicología Experimental y Aplicada

Doctor en Psicología de la Universidad Nacional de Córdoba, docente de la asignatura Estadística en la Fac. de Psicología (UBA), Investigador Asistente de CONICET.

How to Cite

Effect of haloperidol on consummatory successive positive contrast in adult rats with adolescent isolation. (2015). Argentinean Journal of Behavioral Sciences, 7(2), 30-37. https://doi.org/10.32348/1852.4206.v7.n2.9482

References

Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-41.

Chen, P., & Jacobson, K. C. (2012). Developmental Trajectories of Substance Use from Early Adolescence to Young Adulthood: Gender and Racial/Ethnic Difference. Journal of Adolescent Health, 50, 154-63.

Chin Wei Huang, A., Shyu, B., & Hsiao, S. (2010). Dose-dependent dissociable effects of haloperidol on locomotion appetitive responses, and consummatory behavior in water-deprived rats. Pharmacology Biochemistry and Behavior, 95, 285-291.

Cuenya, L. (2006). Estresores ocupacionales, soporte social y consumo de alcohol en jóvenes. Anuario de Investigaciones, 14, 211-20.

Cuenya, L., Fosacheca, S., Mustaca, A., & Kamenetzky, G. (2011). Efectos del aislamiento en la adultez sobre el dolor y la frustración. Psicológica, 32, 49-63.

Cuenya, L., Fosacheca, S., Mustaca, A., & Kamenetzky, G. (2012). Effects of isolation in adulthood on frustration and anxiety. Behavioural Processes, 90, 155-60.

Cuenya, L., Mustaca, A. & Kamenetzky, G. (2015). Postweaning isolation affects responses to incentive contrast in adulthood. Developmental Psychobiology. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/25604460

Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2003). Novel-object place conditioning in adolescent and adult male and female rats: effects of social isolation. Physiology & Behavior, 80, 317-25.

Ernst, M., Romeo, R. D., & Andersen, S. L. (2009). Neurobiology of the development of motivated behaviors in adolescence: A window into a neural systems model. Pharmacology Biochemistry & Behavior, 93, 199-211.

Ettenberg, A. (1990). Haloperidol prevents the reinstatement of amphetamine-rewarded runway responding in rats. Pharmacology Biochemistry and Behavior, 36, 635-638.

Fabricius, K., Steiniger-Brach, B., Helboe, L., Fink-Jensen, A., & Wörtwein, G. (2011). Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia. International Journal of Developmental Neuroscience, 29, 347-50.

Fiala, B., Snow, F. M., & Greenough, W. T. (1977). Impoverished rats weigh more than enriched rats because they eat more. Developmental Psychobiology, 10, 537-41.

Flaherty, C. F. (1996). Incentive relativity. Cambridge: Cambridge University Press.

Flaherty, C. F., Becker, H. C., & Checke, S. (1983). Repeated successive contrast in consummatory behavior with repeated shifts in sucrose concentration. Animal Learning & Behavior, 11, 407-14.

Fone, K. C. F., & Porkess, M. P. (2008). Behavioural and neurochemical effects of post weaning social isolation in rodents-Relevance to developmental neuropsychiatric disorders. Neuroscience & Biobehavioral Reviews, 32, 1087-102.

Fox, F. M., Sterling, R. C., & Van Bockstaele, E. J. (2009). Cannabinoids and novelty investigation: Influence of age and duration of exposure. Behavioural Brain Research, 196, 248-53.

Hall, F. S., Humby, T., Wilkinson, L. S., & Robbins, T. W. (1997). The Effects of Isolation-Rearing on Sucrose Consumption in Rats. Physiology & Behavior, 62, 291-297.

Hall, H., Sedvall, G., Magnusson, O., Kopp, J., Halldin, C., & Farde, L. (1994). Distribution of D1- and D2-Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain. Neuropsychopharmacology, 11, 245-56.

Hellemans, K. G. C., Benge, L. C., & Olmstead, M. C. (2004). Adolescent enrichment partially reverses the social isolation syndrome. Developmental Brain Research, 150, 103-15.

Hong, S., Flashner, B., Chiu, M., ver Hoeve, E., Luz, S., & Bhatnagar, S. (2012). Social isolation in adolescence alters behaviors in the forced swim and sucrose preference test in female but not in male rats. Physiology & Behavior, 105, 269-75.

Institute of Laboratory Animal Resources (1996). Guide for the care and use of laboratory animals. Washington DC: National Academic Press.

Jahng, J. W., Yoo, S. B., Ryu, V., & Lee, J. (2012). Hyperphagia and depression-like behavior by adolescence social isolation in female rats. International Journal of Developmental Neuroscience, 30, 47-53.

Krank, M., Stewart, S. H., O’Connor, R., Woicik, P. B., Wall, A., & Conrod, P. J. (2011). Structural, concurrent, and predictive validity of the Substance Use Risk Profile Scale in early adolescence. Addictive Behaviors, 36, 37-46.

Lapiz, M. D. S., Fulford, A., Muchimapura, S., Mason, R., Parker, T., & Marsden, C. A. (2003). Influence of Postweaning Social Isolation in the Rat on Brain Development, Conditioned Behavior, and Neurotransmission. Neuroscience and Behavioral Physiology, 33, 13-29.

Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102, 262-302.

Mustaca, A. E., Freidin, E., & Papini, M. R. (2002). Extinction of consummatory behavior in rats. International Journal of Comparative Psychology, 15, 1-10.

Neumark-Sztainer, D., Wall, M., Gou, J., Story, M., Haines, J., & Eisenberg, M. (2006). Obesity, Disordered Eating, and Eating Disorders in a Longitudinal Study of Adolescents: How Do Dieters Fare 5 Years Later? Journal of the American Dietetic Association, 106, 559-68.

Patton, G. C., Coffey, C., & Sawyer, S. M. (2003). The outcome of adolescent eating disorders: findings from the Victorian Adolescent Health Cohort Study. European Child & Adolescent Psychiatry, 12, 25-9.

Phillips, A. G., Vacca, G., & Ahn, S. (2008). A top-down perspective on dopamine, motivation and memory. Pharmacology Biochemistry & Behavior, 90, 236-49.

Schultz, W. (2002). Getting Formal with Review Dopamine and Reward. Neuron, 36, 241-63.

Shanab, M. E., & Ralph, L. (1979). Negative contrast and partial reinforcement effects as a function of crowded rearing conditions in the rat. The Journal of General Psychology, 100, 13-26.

Simon, V. M., Parra, A., Minarro, J., Arenas, M. C., Vinader-Caerols, C., & Aguilar, M. A. (2000). Predicting how equipotent doses of chlorpromazine, haloperidol, sulpiride, raclopride and clozapine reduce locomotor activity in mice. European

Neuropsychopharmacology, 10, 159-164.

Sisk, C. L., & Foster, D. L. (2004). The neural basis of puberty and adolescence. Nature Neuroscience, 7, 1040-7.

Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestation. Neuroscience & Biobehavioral Reviews, 24, 417-63.

van Strien, T., van der Zwalum, C. S., & Engels, R. C. (2010). Emotional eating in adolescents: A gene (SLC6A4/5-HTT) – depressive feelings interaction analysis. Journal of Psychiatric Research, 44, 1035-42.

Vanderschuren, L. J. M. J., Niesink, R. J. M., & Van Ree, J. M. (1996). The Neurobiology of Social Play Behavior in Rats. Neuroscience & Biobehavioral Reviews, 21, 309-26.

Wahlstrom, D., Collins, P. White, T., & Luciana, M. (2010). Developmental changes in dopamine neurotransmission in adolescence: Behavioral implications and issues in assessment. Brain and Cognition, 72, 146-59.

Weiss, I. C., Domeney, A. M., Heidbreder, C. A., Moreau, J., & Feldon, J. (2001). Early social isolation, but not maternal separation,

affects behavioral sensitization to amphetamine in male and female adult rats. Pharmacology Biochemistry & Behavior, 70, 397-409.

Wiley, J. L., & Evans, R. L. (2008). Evaluation of age and sex differences in locomotion and catalepsy during repeated administration of haloperidol and clozapine in adolescent and adult rats. Pharmacological Research, 58, 240-46.