Mechanism, explanatory pluralism and efficient coding explanation in neuroscience
Conteúdo do artigo principal
Resumo
Detalhes do artigo
Commons Attribution License, CCAL). Com esta licença, os autores conservam o direito de propriedade sobre artigos mas permitem que qualquer pessoa façam download e distribuam os artigos publicados na RACC sem necessidade da permissão do autor ou editor. Uma última condição é que sempre, e em todos os casos, o autor e a fonte original de publicação (p.e., RACC) sejam citados. Esta licença foi desenvolvido para facilitar o acesso aberto, gratuito e livre a trabalhos originais do arte e ciência.
Como Citar
Referências
Abney, D., Dale, R., Yoshimi, J., Kello, Ch., Tylén, K., Fusaroli, R. (2014) “Joint perceptual decision-making: a case study in explanatory pluralism”, Frontiers in Psychology, 5, 330, p. 1-12.
Barros, B. (2008) “Natural selection as a mechanism”, Philosophy of Science, 75(3), pp. 306-322
Batterman, R. (2002) The devil in the details, Oxford: Oxford University Press.
Bechtel, W. (2008) Mental Mechanisms: Philosophical perspective on cognitive neuroscience, New York: Routledge.
Bickle, J. (2006) “Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience”, Synthese, 151, pp. 411-434.
Boone, W. and Piccinini, G. (2015) “The cognitive neuroscience revolution”, Synthese, 193(5), pp 1509-1534.
Piccinini, G. y Boone, T. (2016) “Mechanistic Abstraction”, Philosophy of Science, online first.
Abney, D., Dale, R., Yoshimi, J., Kello, Ch., Tylén, K., & Fusaroli, R. (2014). Joint perceptual decision-making: a case study in explanatory pluralism. Frontiers in Psychology, 5(330), 1-12.
Batterman, R. (2002). The devil in the details. Oxford: Oxford University Press.
Bechtel, W. (2008). Mental Mechanisms: Philosophical perspective on cognitive neuroscience. New York: Routledge.
Bechtel, W., & Abrahamsen, A. (2005). Explanation: A Mechanistic Alternative. Studies in History and Philosophy of the Biological and Biomedical Sciences, 36, 421-441.
Boone, W., & Piccinini, G. (2016a). The cognitive neuroscience revolution. Synthese, 193(5), 1509-1534.
Boone, W., & Piccinini, G. (2016b). Mechanistic abstraction. Philosophy of Science, 83(5), 686-697.
Caddick, S., Carandini, M., Hausser, M., Martin, K., Priebe, N., Reynolds, … Yokoyama, C. (2009). Physiology: Mechanisms. In D. Heegger, E. Simoncelli, J. Reynolds, & M. Carandini (Eds.), Canonical neural computation: a summary and a roadmap (pp. 8-12). Recovered from: http://www.theswartzfoundation.org/docs/Canonical-Neural-Computation-April-2009.pdf
Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Neuroscience, 13, 51-62.
Chirimuuta, M. (2014). Minimal Models and Canonical Neural Computations: The Distinctness of Computational Explanation in Neuroscience. Synthese, 191, 127-153.
Chirimuuta, M. (forthcoming). Explanation in computational neuroscience: causal and non-causal.
Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press.
Clatworthy, P., Chirimuuta, M., Lauritzen, J., & Tolhurst, D. (2003). Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1). Vision Research, 43, 1983-2001.
Craver, C. (2006). When mechanistic models explain. Synthese, 28(2), 141-163.
Craver, C. (2007). Explaining the Brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Clarendon.
Craver, C. (2009). Mechanisms and natural kinds. Philosophical Psychology, 22, 575-594.
Craver, C. (2015). The ontic account of scientific explanation. In M. Kaiser, O. Scholz, D. Plenge, & A. Hüttemann (2015) Explanation in the Special Sciences: The case of biology and history (pp. 27-52). Dordretch: Springer.
Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory Pluralism in Cognitive Science. Cognitive Science, 33, 739-742.
Darden, L., & Maull, N. (1977). Interfield theories. Philosophy of Science, 44, 43-64.
Dayan, P., & Abbott, L. (2005). Theoretical Neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.
Feyerabend, P. (1975). Against method: Outline of an anarchistic theory of knowledge. London: New Left Books.
Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(3), S342-S353.
Glennan, S. (2010). Mechanisms, Causes, and the Layered Model of the World. Philosophy and Phenomenological Research, 81, 362–381.
Harris, C., & Wolpert, D. (2006). The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics, 95(1), 25-29.
Heeger, D. (1992). Normalization of cell responses in the cat striate cortex. Visual Neuroscience, 9, 181-197.
Krickel, B. (forthcoming). A regularist approach to mechanistic type-level explanation.
Lange, M. (2013). What makes a scientific explanation distinctively mathematical?. British Journal for the Philosophy of Science, 64, 485-511.
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421-431.
Levy, A. (2013). What was Hodgkin and Huxley’s Achievement. British Journal for the Philosophy of Science, 65, 469-492.
Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 57, 1-25.
Marr, D. (1982). Vision. San Francisco, CA: Freeman Press.
Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501-1506.
Nagel, E. (1961). The structure of science. Problems in the Logic of Scientific Explanation. New York: Harcourt, Brace and World, Inc.
Oppenheim, O., & Putnam, H. (1958). Unity of Science as a Working Hypothesis. In H. Feigl, M. Scriven, & G. Maxwell (Eds.). Concepts, Theories and the Mind-Body Problem, Minnesota Studies in the Philosophy of Science II (pp. 3-36). Minneapolis: University of Minnesota Press.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501-526.
Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283-311.
Pincock, C. (2012). Mathematical and Scientific Representation. Oxford: Oxford University Press.
Ramón y Cajal, S. (1909). Histology of the Nervous System of Man and Vertebrates. Oxford: Oxford University Press.
Rosen, R. (1967). Optimality Principles in Biology. US: Springer.
Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.
Sundaram, R. (1996). A First Course in Optimization Theory. Cambridge: Cambridge University Press.
Thagard, P. (2003). Pathways to biomedical discovery. Philosophy of science, 70(2), 235-254.
Weisberg, M. (2006). Forty years of ‘The Strategy’. Biology and Philosophy, 21(5), 623-645.
Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104(2), 639-659.
Weiskopf, D. (2011). Models and mechanisms in psychological explanation. Synthese 183, 313-338.
Woodward, J. (2003). Making things happen: a theory of causal explanation. Oxford: Oxford University Press.
Wright, C. (2012). Mechanistic explanation without the ontic conception. European Journal of Philosophy of Science, 2(3), 375-394.
Wright, C., & Bechtel, W. (2007). Mechanisms and psychological explanation. In P. Thagard (Ed.), Philosophy of Psychology and Cognitive Science (pp. 31-79). New York: Elsevier.