Sediment yield in the headwaters of Videla stream for the study of the water erosion process at the micro-watershed scale

Authors

DOI:

https://doi.org/10.59069/24225703eee022

Keywords:

hydrometeorological variables, multivariate data analysis, Tandilia System, watershed head

Abstract

Water erosion represents a significant contributor to soil loss on a global scale. The extent of erosion occurring within a watershed directly correlates with the quantity of sediment transported through watercourses. Furthermore, the presence of excess sediment has an adverse impact on water quality and the ecosystem services it provides. The present study aims to analyse sediment yield in an agricultural micro-watershed located in the centre of Buenos Aires province during the years 2022 and 2023. Additionally, the study will evaluate the relationship between sediment yield and hydrometeorological variables through multivariate data analysis. The collection of suspended sediments was conducted bimonthly from the outlet of the watershed using a passive device. For each collection period, the recorded rainfall-runoff erosive events were considered, and the medians of the relevant hydrometeorological variables were calculated. Additionally, data were collected on land use and crop status. In 2022, a year characterised by low precipitation levels (20.5% less than the average) and a relatively high number of erosive events (64.08 g of sediment was collected). In 2023, a year with higher precipitation levels (14% more rainfall) and a greater number of erosive events (27), the total sediment yield was 267.41 g. Principal component analysis demonstrated that in 2022, rainfall erosivity exerted an influence on the runoff process, whereas rainfall intensity exerted an influence on sediment production. In the case of 2023, the amount of precipitation was predominantly linked to runoff and, in turn, to the production of sediment draining the catchment. It can be concluded that, relatively, the process of water erosion was higher in 2023.

References

American Society for Testing Materials (2007). ASTM standards related to environmental sampling (3ª ed.). ASTM International.

Andreazzini, M. J., Degiovanni, S., Spalletti, P. y Irigoyen, M. (2014). Producción de sedimentos en una cuenca de Sierras Pampeanas, Córdoba, Argentina: estimación para distintos escenarios. AQUA-LAC, 6(1), 38–49. https://doi.org/10.29104/phi-aqualac/2014-v6-1-06

Ares, M. G., Varni, M., Entraigas, I. y Marzoratti, M. (2007). Uso del suelo y grado de cobertura vegetal en una cuenca del centro de la provincia de Buenos Aires. Cuadernos del CURIHAM, 13, 63–69. https://doi.org/10.35305/curiham.v13i0.83

Ares, M. G., Varni, M. y Chagas, C. (2014). Erosión Hídrica En Una Microcuenca Agrícola Bajo Siembra Directa Del Centro De La Provincia De Buenos Aires. Ciencia del suelo, 32, 259–270. https://ri.conicet.gov.ar/handle/11336/33631

Ares, M. G., Bongiorno, F., Holzman, M., Chagas, C., Varni, M. y Entraigas, I. (2016). Water erosion and connectivity analysis during a year with high precipitations in a watershed of Argentina. Hydrology Research, 47, 1239–1252. https://doi.org/10.2166/nh.2016.179

Ares, María Guadalupe, Varni, M. y Chagas, C. (2020). Runoff response of a small agricultural basin in the argentine Pampas considering connectivity aspects. Hydrological Processes, 34(14), 3102–3119. https://doi.org/10.1002/hyp.13782

Ares, M. G., Zabala, M. E., Dietrich, S., Vercelli, N., Entraigas, I., Gregorini, C. A., Marcovecchio, R. y Aispún, Y. (2024). Drainage network dynamics in an agricultural headwater sub-basin. The Science of the Total Environment, 914(169826), 169826. https://doi.org/10.1016/j.scitotenv.2023.169826

Blanco-Canqui, H. y Lal, R. (2008). Principles of soil conservation and management (1ª ed). Springer Science & Business Media.

Cerdan, O., Le Bissonnais, Y., Govers, G., Lecomte, V., van Oost, K., Couturier, A., King, C. y Dubreuil, N. (2004). Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. Journal of Hydrology, 299(1–2), 4–14. https://doi.org/10.1016/j.jhydrol.2004.02.017

Chagas C. I. y Kraemer, F. B. (2023). Degradación de las tierras con énfasis en la región pampeana argentina. En F. B. Kraemer, C. I. Chagas, M. Castiglioni y M. Massobrio (Eds), Degradación de tierras con énfasis en la Región Pampeana: aportes para una gestión racional del uso agropecuario (pp. 201-247). Ciudad Autónoma de Buenos Aires. Editorial Facultad de Agronomía.

Chapman, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5), 701–714. https://doi.org/10.1002/(sici)1099-1085(19990415)13:5

Cingolani, C. A. (2005). Unidades morfoestructurales (y estructuras menores) de la provincia de Buenos Aires. En Etcheverry, R.O., Llambías, M.F., y Caballé, E.J. (Eds.), Geología y Recursos Minerales de la provincia de Buenos Aires (pp. 21–30). Relatorio del XVI Congreso Geológico Argentino.

Dingman, S.L. (2015). Physical hydrology (3ª ed). Illinois, USA: Waveland Press.

Gregorini, C.A., Fornés, M., Gualde, M.S., Ríos Hiriart, G., Kuntz, S., Arrouy, M.J. y Ares, M.G. (2024). Aplicación de tomografías de resistividad eléctrica para la caracterización del subsuelo en un ambiente de cabecera de cuenca hidrográfica. Geoacta (En prensa).

Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A. y Gilroy, E. J. (2019). Statistical methods in water resources. En Techniques and Methods (2ª ed.). US Geological Survey.

INTA (Instituto Nacional de Tecnología Agropecuaria). (1992). Carta de Suelos de la República Argentina, Hoja 3760-22, Chillar, 1:50.000. INTA, Buenos Aires, Argentina.

Jolliffe, I. T. (2002). Principal component analysis (2ª ed). Springer-Verlag. https://doi.org/10.1007/b98835

Lal, R. (2014). Soil conservation and ecosystem services. International soil and water conservation research, 2(3), 36-47.

Lê, S., Josse, J. y Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of statistical software, 25, 1-18.

Li, Z. y Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-science reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004

Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X. y Fu, B. (2018). The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. Journal of Geographical Sciences, 28, 59-78.

MacCallum, R. C., Widaman, K. F., Zhang, S. y Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99. https://doi.org/10.1037/1082-989x.4.1.84

Marchese, H. G. y Di Paola, E. (1975). Miogeosinclinal Tandil. Revista Asociación Geológica Argentina, 30(2), 161–179.

Minella, J. P. G., Merten, G. H., Schlesner, A., Bernardi, F., de Barros, C. A. P., Tiecher, T., Ramon, R., Evrard, O., dos Santos, D. R., Reichert, J. M. y Tassi, R. (2022). Combining sediment source tracing techniques with traditional monitoring: The “Arvorezinha catchment” experience. Hydrological Processes, 36(9). https://doi.org/10.1002/hyp.14665

Mota, J. R., Rodrigues, J. A. M., de Oliveira, L. F. C. y Viola, M. (2021). Estimativa da vulnerabilidade dos solos à erosão hídrica na bacia hidrográfica do Rio das Mortes (MG). Revista em Agronegócio e Meio Ambiente, 14(1), 1-14.

Nágera, J. J. (1940). Tandilia. Biblioteca de la Facultad de Humanas y Ciencias de la Educación. Universidad Nacional de La Plata, 24, 1–272.

Nathan, R. J. y McMahon, T. A. (1990). Evaluation of automated techniques for baseflow and recession analyses. Water Resources Research, 26(7), 1465–1473. https://doi.org/10.1029/WR026i007p01465

Oeurng, C., Sauvage, S., y Sánchez-Pérez, J.M. (2010). Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France. Earth Surface Processes and Landforms, 35(11), 1289–1301. https://doi.org/10.1002/esp.1971

Perks, M., Warburton, J. y Bracken, L. (2013). Critical assessment and validation of a time-integrating fluvial suspended sediment sampler. Hydrological Processes, 28(17), 4795-4807. https://doi.org/10.1002/hyp.9985

Phillips, J. M., Russell, M. A. y Walling, D. E. (2000). Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrological Processes, 14(14), 2589–2602. https://doi.org/10.1002/1099-1085(20001015)14:14%3C2589::AID-HYP94%3E3.0.CO;2-D

Rajbanshi, J. y Bhattacharya, S. (2020). Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin, India. Journal of Hydrology, 587, 124935.

Restrepo, J. D., Kjerfve, B., Hermelin, M. y Restrepo, J. C. (2006). Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia. Journal of Hydrology, 316(1–4), 213–232. https://doi.org/10.1016/j.jhydrol.2005.05.002

Rodríguez, L. B., Vionnet, C., Parkin, G. y Younger, P. (2000). Aplicación de un método automático para la separación de las componentes del hidrograma. Actas del XIX Congreso Latinoamericano de Hidráulica (Córdoba), (pp. 279–286).

Rodríguez-Blanco, M. L., Taboada-Castro, M. M. y Taboada-Castro, M. T. (2019). An overview of patterns and dynamics of suspended sediment transport in an agroforest headwater system in humid climate: Results from a long-term monitoring. Science of the Total Environment, 648, 33-43.

RStudio Team (2024). RStudio: Desarrollo integrado para R. RStudio, PBC, Boston, MA. URL http://www.rstudio.com/

Schindler Wildhaber, Y., Michel, C., Burkhardt-Holm, P., Bänninger, D. y Alewell, C. (2012). Measurement of spatial and temporal fine sediment dynamics in a small river. Hydrology and Earth System Sciences, 16(5), 1501–1515. https://doi.org/10.5194/hess-16-1501-2012

Wei, J.-B., Xiao, D.-N., Zeng, H. y Fu, Y.-K. (2007). Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental Geology, 53(8), 1663–1672. https://doi.org/10.1007/s00254-007-0773-z

Wischmeier W.H. y Smith, D.D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Handbook (537). USDA-ARS.

Zárate, M. y Mehl A. (2010). Geología y geomorfología de la Cuenca del arroyo del Azul, provincia de Buenos Aires, Argentina. En: M. Varni, I. Entraigas y L. Vives (eds.). Hacia la gestión integral de los recursos hídricos en zona de llanuras (1 ª ed, pp. 65-78). Editorial Martín. Mar del Plata, Argentina.

Zhang, S., Li, Y., Fan, W. y Yi, Y. (2016). Impacts of rainfall, soil type, and land-use change on soil erosion in the liusha river watershed. Journal of Hydrologic Engineering, 22(4), 04016062. https://doi.org/10.1061/(asce)he.1943-5584.0001479

Downloads

Published

2025-01-24

Issue

Section

Original Articles

How to Cite

Sediment yield in the headwaters of Videla stream for the study of the water erosion process at the micro-watershed scale. (2025). Journal of Engineering Geology and the Environment, 52, ee022. https://doi.org/10.59069/24225703eee022