A study about the understanding of the physical notions of Newtonian mechanics: the case of the center of mass

Authors

  • Nehemías Moreno Martínez
  • Vincenç Font Moll
  • Rita Guadalupe Angulo Villanueva

DOI:

https://doi.org/10.55767/2451.6007.v30.n2.22732

Keywords:

Center of mass, Physical situation, Complexity, Idealization, Comprehension

Abstract

The understanding of the Center of Mass is described from a case study. The description is based on the analysis of the production of a group of university students when they solve some tasks proposed in a representative sample of contexts, a static mechanical context and a dynamic one, in which the Center of Mass is important for its resolution. In the study of conceptions, some theoretical tools of the Ontosemiotic Approach are used and adapted such as the configuration of mathematical objects of epistemic and cognitive type. The comparison between the epistemic configuration, organized by a teacher, and the cognitive configurations of the students, shows that the static context should include situations in which the process of idealization is favored, that the competent use of this notion in a specific task It provides the student with a partial knowledge and, on the other hand, that the transfer of knowledge from one context to another is not immediate, since students do not consider the complexity of the dynamic context.

References

Apóstol, M. T. y Mnatsakanian, M. (2000). Finding Centroids, the Easy Way. Math Horizons, 8(1), 7-12.

Badillo, E., Font, V. y Edo, M. (2014).Representaciones matemáticas usadas en la resolución de un problema aritmético de reparto por niños del primer ciclo de primaria. UNO. Revista de Didáctica de las Matemáticas, 65, 59-69.

Boulter, C. J. (2000). Language, Models and Modelling in the Primary Science Classroom. En J.K. Gilbert y C.J. Boulter (Eds.), Developing Models in Science Education (289-305). London: Kluwer Academic.

Brown, D. y Cox, A. (2009). Innovative uses of video analysis. The Physics Teacher,47(3), 145-150.

Calderón, S. E. y Gil, S. (2011). Experimentos con objetos que caen con aceleración mayor que g. Latin American Journal of Physics Education, 5(2), 501-507.

Chacón, Á. E. R. y Rodríguez, O. L. D. R. (2009). La formalización de los conceptos físicos. El caso de la velocidad instantánea. Revista Educación y Pedagogía, 15(35), 55-67.

Collazos, M. C. A. (2009). Prototipo para la Enseñanza de la Dinámica Rotacional (Momento de Inercia y Teorema de Ejes Paralelos). Latin American Journal of Physics Education, 3(3), 619-624.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131.

Feynman, R. P., Leighton, B. R. y Sands M. (2010). The Feynman Lectures on Physics, Volume I (The New Millennium Edition). Consultado en http://www.feynmanlectures.caltech.edu/I_19.html en octubre de 2018.

Font, M. V. (2016). Coordinación de Teorías en Educación Matemática: el caso del enfoque ontosemiótico. Perspectivas de Educação Matemática, 9(20), 256-277.

Godino, J. D. y Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14(3), 325-355.

Johnson, R.B. y Onwuegbuzie, A.J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.

López-García, V. (2004). La física de los juguetes. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 1(1), 17-30.

Malaspina, U. V. (2007). Intuición, rigor y resolución de problemas de optimización. Revista Latinoamericana de Investigación en Matemática Educativa, 10(3), 365-399.

Malaspina, U. V. y Font, V. M. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics, 75(1), 107-130.

Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from “Case Study Research in Education”. US San Francisco: Jossey-Bass Publishers.

Moreno, M.N., Font, M.V. y Maciel, R. J. (2016). La importancia de los diagramas en la resolución de problemas de cuerpos deformables en Mecánica: el caso de la fuerza de fricción. Ingeniare. Revista chilena de ingeniería, 24(1), 158-172.

Ruiz, G. G. (2003). El concepto estadístico de centro de gravedad. Números, Revista de Didáctica de las Matemáticas, 53, 43-53.

Santos, G., Otero, M. R. y Fanaro, M. D. L. A. (2000). ¿Cómo usar software de simulación en clases de Física? Caderno Brasileiro de Ensino de física, 17(1), 50-66.

Treeby, D. (2017). A Physical Proof of the Pythagorean Theorem. The Physics Teacher, 55(2), 92-93.

Young, H. D. y Freedman, R. A. (2013). Física universitaria. México: Pearson.

Published

2018-12-18

How to Cite

A study about the understanding of the physical notions of Newtonian mechanics: the case of the center of mass. (2018). Journal of Physics Teaching, 30(2), 7-22. https://doi.org/10.55767/2451.6007.v30.n2.22732