Scientific explanation in a science classroom. Some didactic considerations from students’ explanations

Authors

  • Guillermo Cutrera Facultad de Ciencias Exactas y Naturales. Departamento de Educación Científica. Universidad Nacional de Mar del Plata. Funes 3350, CP 7600, Mar del Plata. Argentina.
  • Marta Massa Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario. Av. Pellegrini 250, CP 2000, Rosario. Argentina
  • Silvia Stipcich

DOI:

https://doi.org/10.55767/2451.6007.v33.n2.35199

Keywords:

School scientific explanations, Teaching practices, Semantic dimension, Levels of conceptualization

Abstract

The work is oriented by two questions: what are the characteristics of the explanations formulated by secondary education students
and how to define criteria for analyzing them and teach them to future teachers, as inputs for didactic intervention. The research
adopts a qualitative perspective and an instrumental case study approach. The case corresponds to the explanation elaborated by a
group of high school students in a Physicochemistry classroom. Discourse analysis was used, from a linguistic, logical and representational perspective and the semantic dimension of the Theory of Legitimation Codes from the notions of levels of conceptualization and
decontextualization / contextualization of discourse. The analysis identified an adequate use of conditional inference and that, with
the incorporation of the school scientific model, students intertwine causal relationships; but also, that the explicitness of the entities
involved in the modeling is lacking and that some conclusions are stated without justification from the school scientific model (constancy of pressure). Consequences for teaching practices are discussed.

References

Bell, P. y Linn, M. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817.

de Medeiros, E. F., da Silva, M. G. L. y Locatelli, S. W. (2018). A argumentação e o potencial metacognitivo de uma atividade experimental baseada na POA (Previsão-Observação-Argumentação). Amazônia: Revista de Educação em Ciências e Matemáticas, 14(29), 27-42.

Eder, M. L. y Adúriz-Bravo, A. (2008). La explicación en las ciencias naturales y en su enseñanza: aproximaciones epistemológica y didáctica. Revista Latinoamericana de Estudios Educativos, 4(2), 101-133

Gilbert, J., Boulter, C. y Rutherford, M. (2000). Explanations with models in science education. In Developing models in science education (pp. 193-208): Springer.

Hamza, K. M. y Wickman, P. O. (2009). Beyond explanations: What else do students need to understand science? Science Education, 93(6), 1026-1049.

Johnstone, A. H. (2009). Foreword, in J. K. Gilbert and D. F. Treagust (ed.), Multiple Representations in Chemical Education(pp. v–vi), Dordecht: Springer.

Kenyon, L. y Reiser, B. J. (2006). A functional approach to nature of science: Using epistemological understandings to construct and evaluate explanations. Paper presented at the Annual Meeting of the American Educational Research Association (AERA), San Francisco, CA.

Keys, C. W., Hand, B., Prain, V. y Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory

investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084.

Leite, L. y Afonso, A. (2004). Forms of reasoning used by prospective physical sciences teachers when explaining and predicting natural phenomena: the case of air pressure. Canadian Journal of Science, Mathematics and Technology Education, 4(2), 169-191.

Leite, L. y Figueiroa, A. (2004). Las actividades de laboratorio y la explicación científica en los manuales escolares de ciencias. Alambique: Didáctica de las ciencias experimentales, 10(39), 20-30.

Macnaught, L., Maton, K., Martin, J. y Matruglio, E. (2013). Jointly constructing semantic waves: Implications for teacher training. Linguistics and Education, 24(1), 50-63.

Maton, K. (2009). Cumulative and segmented learning: Exploring the role of curriculum structures in knowledge-building. British Journal of Sociology of Education, 30(1), 43-57.

Maton, K. (2011). Theories and things: The semantics of disciplinarity. In C. Frances & K. Maton (Eds.), Disciplinarity: Functional linguistic and sociological perspectives (pp. 62-84). London: Continuum International Publishing Group.

Maton, K. y Doran, Y. J. (2017). Semantic density: A translation device for revealing complexity of knowledge practices in discourse, part 1—wording. Onomázein, 46-76.

McNeill, K. L. y Krajcik, J. (2006). Supporting students’ construction of scientific explanation through generic versus context-specific written scaffolds. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.

Mortimer, E. (2000). Microgenetic analysis and the dynamic of explanations in science classroom. Paper presented at the Proceedings of the III Conference for Sociocultural Research.

Mortimer, E. F. y Scott, P. (2003). Meaning Making In Secondary Science Classrooms. Maidenhead,Philadelphia: Open University Press.

Sandoval, W. y Reiser, B. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.

Souza, K. A. F. D. y Cardoso, A. A. (2008). Aspectos macro e microscópicos do conceito de equilíbrio químico e de sua abordagem em sala de aula. Química nova na escola, 27(1), 51-56.

Stake, R. (1995). The art of case study research. Sage.

Taber, K. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156-168.

Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179-195.

Tang, K. S. (2015). The PRO instructional strategy in the construction of scientific explanations. Teaching Science, 61(4), 14.

Tang, K.-S. y Danielsson, K. (2018). Global developments in literacy research for science education. Springer.

Tate, E. D., Ibourk, A., McElhaney, K. W. y Feng, M. (2020). Middle School Students’ Mechanistic Explanation About Trait Expression in Rice Plants During a Technology-Enhanced Science Inquiry Investigation. Journal of Science Education and Technology, 1-14.

Taylor, S. y Bogdan, R. (1987). Introducción a los métodos cualitativos de investigación (Vol. 1): Paidós Barcelona.

Tourinho e Silva, A. d. C. y Mortimer, E. F. (2008). Aspectos Epistêmicos das Estratégias Enunciativas em uma Sala de Aula de Química. Química nova na escola, 31(2).

Wood, D., Bruner, J. S. y Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.

Wu, H. K. y Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492.

Yeo, J. y Gilbert, J. (2017). The Role of Representations in Students’ Explanations of Four Phenomena in Physics: Dynamics, Thermal Physics, Electromagnetic Induction and Superposition. In Multiple Representationsin Physics Education (pp. 255-

287). Springer.

Published

2021-11-05

Issue

Section

Investigación en Enseñanza de la Física

How to Cite

Scientific explanation in a science classroom. Some didactic considerations from students’ explanations. (2021). Journal of Physics Teaching, 33(2), 169-177. https://doi.org/10.55767/2451.6007.v33.n2.35199