Semantic dimension in the construction of school scientific explanations in the physical chemistry classroom of secondary school: an analysis of the exchanges between a practitioner and students

Authors

  • Guillermo Cutrera Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Educación Científica
  • Marta Massa Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura
  • Silvia Stipcich Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas

DOI:

https://doi.org/10.55767/2451.6007.v36.n.47229

Keywords:

Scientific explanations, Semantic dimension, Initial teacher training

Abstract

The construction of scientific explanations is a central aspect of teaching and learning science. Studying how preservice teachers can guide this process is crucial to promote students' scientific literacy. In this context, Legitimation Code Theory (LCT) offers a valuable conceptual framework to analyze the pedagogical and discursive practices that favor the construction of knowledge. In this work, the discursive exchanges between a practitioner and students are analyzed during the joint construction of a scientific explanation of an everyday phenomenon using the semantic dimension of the TCL. The analysis reveals that constructing a school scientific explanation involves moving strategically at the semantic level, weakening and strengthening semantic gravity and density. 

References

Blackie, M. A. (2014). Creating semantic waves: Using Legitimation Code Theory as a tool to aid the teaching of chemistry. Chemistry Education Research and Practice, 15(4), 462-469. doi: https://doi.org/10.1039/C4RP00147H

Clarence, S. (2016). Exploring the nature of disciplinary teaching and learning using Legitimation Code Theory Semantics. Teaching in Higher Education, 21(2), 123-137. doi: https://doi.org/10.1080/13562517.2015.1115972

Cohen, L., Manion, L. y Morrison, K. (2002). Research methods in education. New York, United States of America: Routledge.

Erickson, F. (2012). Qualitative research methods for science education. En B. Fraser, K. Tobin y C. McRobbie (Eds.), Second International Handbook of Science Education (1451-1469). Dordrecht: Springer.

Georgiou, H. (2016). Putting physics knowledge in the hot seat: The semantics of student understandings of thermodynamics. En K. Maton, S. Hood y S. Shay (Eds.), Knowledge-building: Educational studies in Legitimation Code Theory (176–192). New York, United States of America: Routledge.

Georgiou, H. (2020). Semantic density in classroom practices: A tool for unpacking complexity. Research in Science Education, 51, 1039–1053. doi: https://doi.org/10.1007/s11165-020-09933-x

Georgiou, H., Maton, K. y Sharma, M. (2014). Recovering knowledge for science education research: Exploring the "Icarus effect" in student work. Canadian Journal of Science, Mathematics and Technology Education, 14(3), 252-268. https://doi.org/10.1080/14926156.2014.935526

Kararo, M. y Colvin, R. (2019). Predictions and constructing explanations: An investigation into introductory chemistry students' understanding of structure–property relationships. Chemistry Education Research and Practice, 20(1), 103-116. doi: https://doi.org/10.1039/C8RP00202A

Macnaught, L., Maton, K., Martin, J. R. y Matruglio, E. (2013). Jointly constructing semantic waves: Implications for teacher training. Linguistics and Education, 24(1), 50-63. doi: https://doi.org/10.1016/j.linged.2012.11.008

Martin, J. R., Maton, K. y Matruglio, E. (2010). Historical cosmologies: Epistemology and axiology in Australian secondary school history discourse. Revista Signos, 43, 433-463. doi: http://dx.doi.org/10.4067/S0718-09342010000400003

Maton, K. (2009). Cumulative and segmented learning: Exploring the role of curriculum structures in knowledge‐building. British Journal of Sociology of Education, 30(1), 43-57. doi: https://doi.org/10.1080/01425690802514342

Maton, K. (2013). Making semantic waves: A key to cumulative knowledge-building. Linguistics and Education, 24(1), 8-22. doi: https://doi.org/10.1016/j.linged.2012.11.005

Maton, K. (2014). Knowledge and knowers: Towards a realist sociology of education. New York, United States of America: Routledge.

Maton, K. (2016). Legitimation code theory: building knowledge about knowledge-building. En K. Maton S. Hood y S. Shay (Eds.), Knowledge-building: educational studies in legitimation code theory (1-22). New York, United States of America: Routledge.

Maton, K. (2019). Semantics from Legitimation Code Theory: How context-dependence and complexity shape academic discourse. En K. Maton, J. R. Martin y Y. J. Doran (Eds.), Studying science: Knowledge, language, pedagogy (49-84). New York, United States of America: Routledge.

Maton, K. (2020). Semantic waves: Context, complexity and academic discourse. En J. R. Martin, K. Maton y Y. J. Doran (Eds.), Accessing academic discourse: Systemic functional linguistics and Legitimation Code Theory (59-85). New York, United States of America: Routledge.

McNeill, K. L. (2011). Supporting students' construction of scientific explanation through generic versus contextspecific written scaffolds. International Journal of Science Education, 33(15), 2089-2113. doi: https://doi.org/10.1080/09500693.2010.549879

Mortimer, E. F., Massicame, T., Tiberghien, A. y Buty, C. (2005). Uma metodologia de análise e comparação entre a dinâmica discursiva de salas de aulas de ciências utilizando software e sistema de categorização de dados em vídeo: parte 1, dados gerais. Actas del V Encontro Nacional de Pesquisa em Ensino de Ciências.

Mouton, M. (2019). A case for project based learning to enact semantic waves: towards cumulative knowledge building. Journal of Biological Education, 54(4), 363–380. doi: https://doi.org/10.1080/00219266.2019.1585379

Santos, B. F. y Mortimer, E. F. (2019). Ondas semânticas e a dimensão epistêmica do discurso na sala de aula de química. Investigações em Ensino de Ciências, 24(1), 62-80. doi: https://doi.org/10.22600/1518-8795.ienci2019v24n1p62

Stake, R. (2010). Qualitative research: Studying how things work. New York: Guilford Press.

Tang, K. S., Deguchi, M. y Sato, M. (2019). The affordances of informal learning environments for scientific literacy and the influence of students' epistemic beliefs. International Journal of Science Education, 41(15), 2117-2135. doi: https://doi.org/10.1080/09500693.2019.1660928

Yin, Y. y Wang, Y. (2021). Probing into the effects of constructing scientific explanations on students' learning: A perspective of semantic gravity and semantic density. Research in Science Education, 51(2), 529-551. doi: https://doi.org/10.1007/s11165-020-09981-3

Zangori, L. y Forbes, C. T. (2014). Scientific Practices in Elementary Classrooms: Third‐Grade Students’ Scientific Explanations for Seed Structure and Function. Science Education, 98(4), 614-639.

Zhao, C., Zhang, S., Cui, H., Hu, W. y Dai, G. (2023). Middle school students' alternative conceptions about the human blood circulatory system using four-tier multiple-choice tests. Journal of Biological Education, 57(1), 51-67. doi: https://doi.org/10.1080/00219266.2021.1941178

Downloads

Published

2024-11-27

Issue

Section

Trabajos presentados a SIEF

How to Cite

Semantic dimension in the construction of school scientific explanations in the physical chemistry classroom of secondary school: an analysis of the exchanges between a practitioner and students. (2024). Journal of Physics Teaching, 36, 87-95. https://doi.org/10.55767/2451.6007.v36.n.47229