Estrategia didáctica para identificar y modelar conceptos básicos de mecánica basada en los estándares científicos de la próxima generación
DOI:
https://doi.org/10.55767/2451.6007.v35.n2.43725Palavras-chave:
Estrategia didáctica, Estándares científicos, MecánicaResumo
El artículo describe a un grupo de estudiantes de primer semestre que ingresan al programa de Ingeniería mecánica en la Universidad Autónoma de Tlaxcala en México. Se identifican algunas estrategias didácticas alineadas con un curso a distancia y al marco de referencia de los estándares científicos de la próxima generación. Además, se incorporan la modelización de conceptos básicos y el pensamiento reflexivo. La estrategia propuesta es conducir a los estudiantes a la modelación básica de los conceptos fundamentales de la mecánica newtoniana, para que reconozcan el sistema de principios y conceptos físicos asociados a las tres leyes del movimiento de Newton. La estrategia comienza mostrando fenómenos del mundo real o experimentos a través de videos cortos, para la construcción de representaciones pictóricas; propias de la ciencia y la tecnología. Paralelamente a la clase, los alumnos trabajan en un proyecto que va ligado a los conceptos anteriores a medida que avanzan en su desarrollo. Los resultados indican que los estudiantes pudieron anclar algunos fenómenos del mundo real con conceptos importantes a través de modelos, aunque todavía tienen problemas semánticos.
Referências
Anders, H. (2011, May 12). Cómo llegar a Marte. [Video]. YouTube. https://youtu.be/XRCIzZHpFtY
Bachelard, G. (2000). La formación del espíritu científico (J. Babini, Trans.). Siglo XXI. (Original work published 1934)
BBC. (2015). Brian Cox visits the world's biggest vacuum. Human Universe – BBC. [Video]. YouTube. https://youtu.be/E43-CfukEgs
Bell, P., Shouse, A., & Peterman, T. (2014). Next generation science standards: What's different, and do they matter?: Stem Teaching Tools. Retrieved February 27, 2017, from http://stemteachingtools.org/brief/14
Brookes, D., (2006), The Role of Language in Learning Physics, Thesis, The State University Of New Jersey
Campbell, T., & McKenna, T. (2016). Important Developments in STEM Education in the United States: Next Generation Science Standards and Classroom Representations of Localized Scientific Activity. K-12 STEM Education, 2(4), 91-97.
Canadian Space Agency. (2019, June 21). How do astronauts weigh themselves in space? [Video]. YouTube. https://youtu.be/oU3pp_4n84U
ESFTV. (2011). Physics of Life - Falling Bodies. [Video]. YouTube. https://youtu.be/MfMs3odd9WE
Euler, U., & Gregorcic, A. (2017). Towards a modeling theory of physics instruction: An empirical study. American Journal of Physics, 85(5), 379-387.
Exploratorium. (n.d.). Next Generation Science Standards (NGSS) Planning Tools. Retrieved from https://www.exploratorium.edu/snacks/ngss
Fitria, A., & Suyudi, S. (2021). Teaching Integrated Newton's Laws of Motion for High School Students. AIP Conference Proceedings, 2330(1), 050013. https://doi.org/10.1063/5.0043193
Gainsburg, J., (2006). The Mathematical Modeling of Structural Engineers, Mathematical Thinking and Learning, 8:1, 3-36.
Gkourounis, T. (2013). Zero Gravity Flight – Weightlessness. [Video]. YouTube. https://youtu.be/HQbAwE83phk
Gómez, R., & Navarro, J. (2020). Enseñanza de la física: un análisis desde el aprendizaje activo. Revista de Investigación Académica, 19, 1-10.
Goud, R. (2015, June 22). Train Motion - Ramesh Goud. [Video]. YouTube. https://youtu.be/XW1pRRLPm3U
Halloun, I., (1997), Schematic Concepts for, Schematic Models of the Real World, The Newtonian Concept of Force, Science Education. https://www.halloun.net/wp-content/uploads/2016/10/Scematic-concepts_SCIED97.pdf
Hernández, J. W., (2022), Estrategia didáctica basada en los Estándares de Ciencias de la Próxima Generación para el aprendizaje de mecánica en estudiantes de ingeniería, Tesis de maestría, Instituto Politécnico Nacional, México.
Hestenes D. (1987), Toward a Modeling Theory of Physics Instruction, American Journal of Physics, 55(5):440-454
Hestenes, D. (1992). Modeling Games in the Newtonian World, American Journal of Physics, 60(8):732-748.
Jauhiainen, J., Koponen, I., & Lavonen, J. (2006). Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and its Influence on Students' Conceptual Understanding of Newton's Third Law. Science Education Interna-tional, 17(3), 149-160.
Jet Propulsion Laboratory. (n.d.). Engineering in the Classroom. Retrieved from https://www.jpl.nasa.gov/edu/teach/resources/engineering-in-the-classroom.php
Joshua, Ellis, (2015). Rethinking the egg drop with NGSS science and engineering practices. MSTA Journal, 61-66.
Krajcik, J. & Merritt, J. (2012). Engaging Students in Scientific Practices: What does Constructing and Revising Models look like in the Science Classroom? Understanding a Framework for K-12 Science Education, Science Scope, 35(7), 6-8.
Krick, E. (1974), Introducción a la ingeniería y al diseño en la ingeniería, segunda edición, Limusa
NASA Johnson. (2021, May). STEMonstrations: Newton's First Law of Motion. [Video]. YouTube. https://youtu.be/-luKN6mad5w
NASA. (2019). SpaceX Crew Dragon Returns from Space Station on Demo-1 Mission. [Video]. YouTube. https://youtu.be/QVEBO6Zuppk
National Research Council of the National Academies, 2012. A Framework for K-12 Science Education: Practices, Cross-cutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165.
Phusis, J. (2021, January 23). Free-fall motion with scale and timer (Slow Motion). [Video]. YouTube. https://youtu.be/FCMgAmDLOis
Prince, M.J. & Felder, R.M. (2006), Inductive Teaching and Learning Methods” J. Engr. Education, 95(2), 123-138
Pruitt, S. L. (2014). The Next Generation Science Standards: The features and challenges. Journal of Science Teacher Education, 25, 145–16.
Rugarcía, A., Felder, R., Woods, D. & Stice, J. (2001), El futuro de la educación en ingeniería, Universidad Iberoameri-cana, BUAP, UPAEP, UATx
Saeed, M., & Idrees, M. (2022). A comparative study of the effectiveness of simulation-based learning and traditional lecture method on physics learning outcomes. Journal of Education and Learning, 11(1), 40-51.
Sánchez, E., & Delgado, L. (2020). Enseñanza de la física con enfoque en el pensamiento crítico. Revista Científica de Educación, 4(1), 22-35.
Sarna, J. (2013). Next Generation Science Standards, for States, by States. Retrieved from https://www.nextgenscience.org/search-standards
Syuhendri 2022, Teaching for conceptual change on Newton’s First Law, J. Phys.: Conf. Ser. 2165 012036.
The Action Lab. (2017). Will a Levitating Gyroscope Spin Forever in a Vacuum Chamber? [Video]. YouTube. https://youtu.be/mn7IedCgva0
Ullman, D. (1992), The Mechanical Design Process, US, McGraw-Hill
Victoria, J. R. (2011), Física Básica, Universidad Ricardo Palma, Perú, Guzlop.
VideoFromSpace. (2012). Space Station Boost Proves Newton's Laws - All 3 of Them! [Video]. YouTube. https://youtu.be/d1iO-yDp_nA
VideoFromSpace. (2018). Newton’s Third Law of Motion Demonstrated in Space. [Video]. YouTube. https://youtu.be/ZkVU-bj9bDk
VideoFromSpace. (2018). Watch Newton’s 2nd Law of Motion Demonstrated in Space. [Video]. YouTube. https://youtu.be/QNIthWuoI5E
Wang, H., Yu, M., & Huang, Y. (2021). The effects of integrating virtual reality into physics instruction on students’ achievement and motivation: A meta-analysis. Educational Technology Research and Development, 69(5), 2571-2596.
Wolbrink, V. & Sarna, J. (2020). Keep Teaching Science! Successful Strategies to Adapt K-12 Science Experiences for Distance Learning, West Ed.
Yuan, Y., Hu, X., & Li, J. (2021). Exploring the effect of game-based learning on physics learning outcomes: A meta-analysis. Interactive Learning Environments, 29(6), 808-821.
Downloads
Publicado
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:Los autores/as conservarán sus derechos de copiar y redistribuir el material, bajo los términos estipulados en la Licencia de reconocimiento, no comercial, sin obras derivadas de Creative Commons que permite a terceros compartir la obra bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- SinObraDerivada — Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).