An exploratory analysis of seasonal and intraseasonal variations of the main airborne pollen types in Sunchales city, Argentina
DOI:
https://doi.org/10.31055/1851.2372.v56.n3.31998Keywords:
airborne pollen concentrations, Burkard trap, Fourier analysis, meteorological influence, Santa Fe provinceAbstract
Background and aims: The study of the seasonal and intra-seasonal variability of the airborne pollen concentration is of paramount importance to understand the relationships with the emitting vegetation and the atmospheric parameters that modulate pollen transport. This research aims to study these variabilities in Sunchales, a city located in the center-east of Argentina.
M&M: Atmospheric monitoring was carried out with a Burkard trap during two seasons in 2012 and 2013 on the outskirts of the city.
Results & Conclusions: The pollination periods of the studied pollen types show a delay in 2013 compared to the previous year, presumably related to a greater amount of cumulative heat units in 2012. However, the integral pollen for the period 2013 was 1.4 times higher than 2012, a fact that is not explained by accumulated precipitation but by the time of day when the hydrometeors occur. Binned pollen concentrations show that the highest concentrations coincide with the urban location of the tree sources while the herbaceous ones show an association with a rural origin. Regarding the intra-seasonal variability, the highest proportion of the airborne pollen variance accumulates on the synoptic-scale (80 - 60%) with periods between 3 and 10 days. During 2012 long waves predominated (> 5.5 days) while in 2013 medium waves prevailed (3.9 - 5.5 days).
References
ALTINTAŞ, D, U., G. B. KARAKOÇ, M. YILMAZ, M. PINAR, S. G. KENDIRLI & H. ÇAKAN. 2004. Relationship between Pollen Counts and Weather Variables in East-Mediterranean Coast of Turkey. Clin. Dev. Immunol. 11: 87–96. https://doi.org/10.1080/10446670410001670544
ARIZMENDI, C. M., J. R. SANCHEZ, N. E. RAMOS & G. I. RAMOS. 1993. Time series prediction with neural nets: Application to airborne pollen forecasting. Int. J. Biometeorol. 37: 139 – 144. https://doi.org/10.1007/BF01212623
AZNARTE, J. L. M., J. M. BENÍTEZ SÁNCHEZ, D. N. LUGILDE, C. DE LINARES FERNÁNDEZ, C. DÍAZ DE LA GUARDIA & F. A. SÁNCHEZ. 2007. Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst. Appl. 32: 1218-1225. https://doi.org/10.1016/j.eswa.2006.02.011
BASSETT, J., C. W. CROMPTON & D. W. WOODLAND. 1977. The biology of Canadian weeds. 21. Urtica dioica L. Can. J. Pl. Sci. 57: 491-498. https://doi.org/10.4141/cjps77-072
BAUER, H., H. GIEBL, R. HITZENBERGER, A. KASPER-GIEBL, G. REISCHL, F. ZIBUSCHKA & H. PUXBAUM. 2003. Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. 108: 1-5. https://doi.org/10.1029/2003JD003545
BIANCHI, M. M. 1992. Calendario polínico de la ciudad de Mar del Plata (agosto 1987 - agosto 1989). Arch. argent. alerg. Inmunol. Clín. 23: 73-86.
BIANCHI, M. M. 1994. El muestreo aerobiológico en Mar del Plata: Aportes de una nueva metodología al análisis de polen. Su aplicación en el diagnóstico de la polinosis. Academia Nacional de Ciencias, Buenos Aires. Monografía N°10.
BIANCHI, M. M., C. M. ARIZMENDI & J. R. SANCHEZ. 1992. Detection of chaos: New approach to atmospheric pollen time-series analysis. Int. J. Biometeorol. 36: 172 - 175. https://doi.org/10.1007/BF01224822
BRIGHETTI, M. A., C. COSTA, P. MENESATTI, F. ANTONUCCI, S. TRIPODI & A. TRAVAGLINI. 2014. Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30: 25–33. https://doi.org/10.1007/s10453-013-9305-3
CADMAN, A., J. DAMES & A. P. S. TERBLANCHE. 1994. Airspora concentrations in the Vaal Triangle: monitoring and potential health effects. 1, pollen. Suid-Afrikaanse Tydskrif vir Wetenskap 90: 607-610.
CABRERA, A. L. 1976. Regiones fitogeográficas argentinas. En: W. F. Kugler (ed.), Enciclopedia Argentina de Agricultura y Jardinería. Tomo 2. 2da edición. pp. 1-85. Acme, Buenos Aires.
COMTOIS, P. 1998. Statistical analysis of aerobiological data. In: MANDRIOLI et al. (eds), Methods in Aerobiology. pp. 218–257. Pitagora Editrice, Bologna.
COMTOIS, P. 2000. The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia 16: 171-176. https://doi.org/10.1023/A:1007667531246
DAMIALIS, A., G. GIOULEKAS, CH. LAZOPOULOU, CH. BALAFOUTIS & D. VOKOLI. 2005. Transport of airborne pollen into the city of Thessaloniki: the effects of wind, direction speed and persistence. Int. J. Biometeorol. 49: 139-145. https://doi.org/10.1007/s00484-004-0229-z
DAMIALIS, A., E. KAIMAKAMIS, M. KONOGLOU, I. AKRITIDIS, C. TRAIDL-HOFFMANN & G. GIOULEKAS. 2017. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?. Sci. Rep. 7: 44535. https://doi.org/10.1038/srep44535
DRIESSEN, M. N. B. M., R. M. A. VAN HERPEN, R. P. M. MOELANDS & F. TH. M. SPIEKSMA. 1989. Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana 28: 37-44. https://doi.org/10.1080/00173138909431010
DRIESSEN, M. N. B. M., R. M. A. VAN HERPEN & L. O. M. J. SMITHUIS. 1990. Prediction of the start of the grass pollen season for the southern part of the Netherlands. Grana 29: 79-86. https://doi.org/10.1080/00173139009429978
EDMONDS, R. L. (ed.) 1979. Aerobiology: The Ecological Systems Approach. US/IBP Synthesis Series 10. Hutchinson & Ross, Inc. Dowden.
EMBERLIN, J. C., J. NORRIS-HILL & R. H. Bryant. 1990. A calendar for tree pollen in London. Grana 29: 301-310. https://doi.org/10.1080/00173139009428941
EMBERLIN, J., S. JONES, J. BAILEY, E. CAULTON, J. CORDEN, S. DUBBELS, J. EVANS, N. MCDONAGH, W. MILLINGTON, J. MULLINS, R. RUSSEL & T. SPENCER. 1994. Variation in the start of the grass pollen season at selected sites in the United Kingdom 1987–1992. Grana 33: 94-99. https://doi.org/10.1080/00173139409427839
ESKRIDGE, R. E., J. Y. KU, S. T. RAO, P. S. PORTER & I. G. ZURBENKO. 1997. Separating Different Scales of Motion in Time Series of Meteorological Variables. Bull. Am. Meteorol. Soc. 78: 1473-1483. https://doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2
FERNÁNDEZ-RODRÍGUEZ, S., P. DURÁN-BARROSO, I. SILVA-PALACIOS, R. TORMO-MOLINA, J. M. MAYA-MANZANO & A. GONZALO-GARIJO. 2016. Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Int. J. Biometeorol. 60: 1509-1517. https://doi.org/10.1007/s00484-016-1141-z
FRENGUELLI, G., E. BRICCHI, B. ROMANO, G. MINCIGRUCCI, F. FERRANTI & E. ANTOGNOZZI. 1992. The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 8: 415-418. https://doi.org/10.1007/BF02272908
FRENGUELLI, G., F. TH. M. SPIEKSMA, E. BRICCHI, B. ROMANO, G. MINCIGRUCCI, A. H. NIKKELS, W. DANKAART & F. FERRANTI. 1991. The influence of air temperature on the starting date of the pollen season of Alnus and Populus. Grana 30: 196-200. https://doi.org/10.1080/00173139109427799
GALÁN, C., J. EMBERLIN, E. DOMINGUEZ, R. H. BRYANT & F. VILLAMANDOS. 1995. A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba. Spain and London. UK. Grana 34: 189-198. https://doi.org/10.1080/00173139509429042
GALÁN, C., M. J. FUILLERAT, P. COMTOIS & E. DOMINGUEZ-VILCHES. 1998. Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int. J. Biometeorol. 41: 95–100. https://doi.org/10.1007/s004840050059
GARCÍA-MOZO, H., C. GALÁN, J. BELMONTE, D. BERMEJO, P. CANDAU, C. DÍAZ DE LA GUARDIA, B. ELVIRA, B. GUTIÉRREZ, V, JATO, I. SILVA, M. M. TRIGO, R. VALENCIA & I. CHUINE. 2009. Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric. For. Meteorol. 149: 256 – 262. https://doi.org/10.1016/j.agrformet.2008.08.013
GASSMANN, M. I. & C. F. PÉREZ. 2006. Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int. J. Biometeorol. 50: 280-291. https://doi.org/10.1007/s00484-005-0021-8
GATZ, D. F. & A. N. DINGLE. 1963. Washout of ragweed pollen by rainfall. J. Geophys. Res. 68: 3641-3648. https://doi.org/10.1029/JZ068i012p03641
GULEV, S. K., T. JUNG & E. RUPRECHT. 2002. Climatology and Interannual Variability in the Intensity of Synoptic-Scale Processes in the North Atlantic from the NCEP–NCAR Reanalysis Data. J. of Clim. 15: 809-828. https://doi.org/10.1175/1520-0442(2002)015<0809:CAIVIT>2.0.CO;2
HERNÁNDEZ-CEBALLOS, M. A., H. GARCÍA-MOZO, J. A. ADAME, E. DOMÍNGUEZ-VILCHES, B. A. DE LA MORENA, J. P. BOLÍVAR & C. GALÁN. 2011. Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int. J. Biometeorol. 55: 17-34. https://doi.org/10.1007/s00484-010-0306-4
HEUSSER, C. J. 1971. Pollen and spores of Chile. Univ. Arizona Press, Tucson, AZ. https://doi.org/10.2307/1218275
HJELMROOS, M. 1992. Long-distance transport of Betula pollen grains and allergenic symptoms. Aerobiologia 8: 231-236. https://doi.org/10.1007/BF02071631
HIRST, J. M. 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39: 259-265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
HOGREFE, C., S. VEMPATY, S. T. RAO & P. S. PORTER. 2003. A comparison of four techniques for separating different time scales in atmospheric variables. Atmos. Environ. 37: 313-325. https://doi.org/10.1016/S1352-2310(02)00897-X
HUFFMAN, J. A., C. POHLKER, A. J. PRENNI, et al., 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13: 1767-1793.
ISAGI, Y., K. SUGIMURA, A. SUMIDA & H. ITO. 1997. How Does Masting Happen and Synchronize?. J. Theor. Biol. 187: 231–239. https://doi.org/10.1006/jtbi.1997.0442
JANZEN, D. H. 1976. Why bamboos wait so long to flower? Ann. Rev. Ecol. Syst. 7: 347-391. https://doi.org/10.1146/annurev.es.07.110176.002023
JATO, V., A. DOPAZO & M. J. AIRA. 2002. Influence of precipitation and temperature on airborne pollen concentration in Santiago de Compostela (Spain). Grana 41: 232-241. https://doi.org/10.1080/001731302321012022
KÄPYLÄ, M. & A. PENTTINEN. 1981. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20: 131-141. https://doi.org/10.1080/00173138109427653
KAWASHIMA, S. & Y. TAKAHASHI. 1999. An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana 38: 316-324. https://doi.org/10.1080/001731300750044555
KELLY, D. 1994. The evolutionary ecology of mast seeding. Trends Ecol. & Evol. 9: 465–471. https://doi.org/10.1016/0169-5347(94)90310-7
KOENIG, W. D. & J. M. H. KNOPS. 2005. The Mystery of Masting in Trees: Some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why?. Am. Scient. 93: 340-347. https://doi.org/10.1511/2005.4.340
KOTTEK, M., J. GRIESER, CH. BECK, B. RUDOLF & F. RUBEL. 2006. World map of the Köppen – Geiger climate classification updated. Meteorol. Z. 15: 259-263. https://doi.org/10.1127/0941-2948/2006/0130
LATORRE, F. 1997. Comparison between phenological and aerobiological patterns of some arboreal species of Mar del Plata (Argentina). Aerobiologia 13: 49–59. https://doi.org/10.1007/BF02694791
LATORRE, F. 1999a. El polen atmosférico como indicador de la vegetación y de su fenología floral. Tesis doctoral UBA. Buenos Aires. Argentina. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n3212_Latorre?p.s=TextQuery
LATORRE, F. 1999b. Differences between airborne pollen and flowering phenology of urban trees with reference to production, dispersal and interannual climate variability. Aerobiologia 15: 131-141.
LATORRE, F. & M. A. CACCAVARI. 2010. Diversidad polínica en el aire de Diamante (Entre Ríos, Argentina). Scientia Interfluvius 1: 7-17.
LEJOLY-GABRIEL, M. 1978. Recherches écologiques sur la pluie pollinique en Belgique. Acta Geographica Lovaniensia 13: 1-279.
LEVETIN, E. & P. K. VAN DE WATER. 2003. Pollen count forecasting. Immunology and allergy clinics of North America 23: 423-442. https://doi.org/10.1016/S0889-8561(03)00019-5
LEWIS, J. P. & M. B. COLLANTES. 1973. El Espinal Periestépico. Cienc. Invest. 29: 360-377. https://doi.org/10.1007/978-1-349-00152-1_3
LIEM, A. S. N. & J. GROOT. 1980. Anthesis and pollen dispersal of Holcus lanatus, Festuca rubra and Poa annua. Grana 19: 21-29. https://doi.org/10.1080/00173138009424984
LO, E. & E. LEVETIN. 2007. Influence of meteorological conditions on early spring pollen in the Tulsa atmosphere from 1987 - 2006. J. Allergy Clin.l Immunol. 119: 101. https://doi.org/10.1016/j.jaci.2006.11.612
MAJEED, H. T., C. PERIAGO, M. ALARCÓN & J. BELMONTE. 2018. Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia 34: 375-388. https://doi.org/10.1007/s10453-018-9520-z
MAKRA, L., M. JUHÁSZ, J. MIKA, A. BARTZOKAS, R. BÉCZI & Z. SÜMEGHY. 2007. Relationship between the Péczely’s large‐scale weather types and airborne pollen grain concentrations for Szeged, Hungary. Grana 46: 43-56. https://doi.org/10.1080/00173130601080704
MCDONALD, J. E. 1962. Collection and washout of airborne pollens and spores by raindrops. Science 135: 435-437. https://doi.org/10.1126/science.135.3502.435
MCDONALD, J. E. 1964. Pollen wettability as a factor in washout by raindrops. Science 143: 1180-1181. https://doi.org/10.1126/science.143.3611.1180
MÄKINEN, Y. 1977. Correlation of atmospheric spore frequencies with meteorological data. Grana 16: 49-53. https://doi.org/10.1080/00173134.1977.11864652
MARKGRAF, V. & H. L. D'ANTONI. 1978. Pollen flora of Argentina. Modern spore and pollen types of Pteridophyta, Gymnospermae and Angiospermae. The Univ. Arizona Press, Tucson. AZ.
MARLETTO, V., G. P. BRANZI & M. SIROTTI. 1992. Forecasting flowering dates of lawn species with air temperature: application boundaries of the linear approach. Aerobiologia 8: 75-83. https://doi.org/10.1007/BF02291333
MASAKA, K. & SH. MAGUCHI. 2001. Modeling the masting behavior of Betula platyphylla var. japonica using the Resource Budget Model. Ann. Bot. 88: 1049 -1055. https://doi.org/10.1006/anbo.2001.1547
MIYAZAKI, Y. 2013. Dynamics of internal carbon resources during masting behavior in trees. Ecol. Res. 28: 143–150. https://doi.org/10.1007/s11284-011-0892-6
MORELLO, J., S. D. MATTEUCCI, A. F. RODRÍGUEZ & M. E. SILVA. 2012. Ecorregiones y complejos ecosistémicos argentinos. Capítulo 11: Espinal. 1era ed. Orientación gráfica editora, Buenos Aires.
MULLENDERS, W., M. DIRICKX, D. VAN DER HAEGEN, Y. BASTIN-SERVAIS & M. DESAIR COREMANS. 1972. La pluie pollinique à Louvain - Heverlee en 1971. Louvain Medical 91: 159-176.
NILSSON, S. & S. PERSSON. 1981. Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana 21: 179-82. https://doi.org/10.1080/00173138109427661
NORRIS-HILL, J. 1998. A method to forecast the start of Betula, Platanus and Quercus pollen seasons in North London. Aerobiologia 14: 165-170. https://doi.org/10.1007/BF02694201
O’ROURKE, M. K. 1990. Pollen re-entrainment: contributions to the pollen rain in an arid environment. Grana 29: 147–151. https://doi.org/10.1080/00173139009427745
OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F. BIGAZOLI, P. TOGNETTI, I. BARBERIS, H. M. MATURO, R. ARAGÓN, P. I. CAMPANELLO, D. PRADO, M. OESTERHELD & R. J. C. LEÓN. 2018. Unidades de vegetación de la Argentina. Ecol. Aust. 28: 40 – 63. https://doi.org/10.25260/EA.18.28.1.0.399
PATHIRANE, L. 1975. Graphical determination of the main pollen season. Pollen Spores 17: 609-610.
PÉREZ, C. F. 2000. Caracterización de la nube polínica y determinantes meteorológicos de la dispersión del sistema urbano-rural de Mar del Plata. Tesis doctoral. Universidad Nacional de Mar del Plata, Mar del Plata. Argentina.
PÉREZ, C. F., M. I. GASSMANN & M. Covi. 2009. An evaluation of the airborne pollen–precipitation relationship with the superposed epoch method. Aerobiologia 25: 313–320. https://doi.org/10.1007/s10453-009-9135-5
PÉREZ, C. F., M. I. GASSMANN, N. TONTI & L. CURTO. 2020b. Panorama sobre la producción, el transporte y depósito de aerosoles de origen biológico. Meteorologica 45: 1 – 24.
PÉREZ, C. F., M. I. GASSMANN, G. A. ULKE & R. MERINO. 2020a. Diversidad polínica atmosférica en la ciudad de Sunchales: agosto - noviembre 2012, agosto - diciembre 2013. Bol. Soc. Argent. Bot. 55: 573-585. https://doi.org/10.31055/1851.2372.v55.n4.25408
PETERNEL, R., L. SRNEC, J. ČULIG, K. ZANINOVIĆ, B. MITIĆ & I. VUKUŠIĆ. 2004. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation. Int. J. Biometeorol. 48: 186–191. https://doi.org/10.1007/s00484-004-0202-x
PIRE, S. M., L. M. ANZÓTEGUI & G. A. CUADRADO. (Eds.) 1998. Flora polínica del Nordeste Argentino. Volumen I. EUDENE – UNNE. Corrientes.
PIRE, S. M., L. M. ANZÓTEGUI & G. A. CUADRADO. (Eds.) 2001. Flora polínica del Nordeste Argentino. Volumen II. EUDENE – UNNE. Corrientes.
RANTA, H., A. OKSANEN, T. HOKKANEN, K. BONDESTAM & S. HEINO. 2005. Masting by Betula-species; applying the resource budget model to north European data sets. Int. J. Biometeorol. 49: 146–151. https://doi.org/10.1007/s00484-004-0228-0
SCRIVEN, R. A. & B. E. A. FISHER. 1975. The long range transport of airborne material and its removal by deposition and washout—I. General considerations. Atmos. Environ. (1967), 9: 49–58. https://doi.org/10.1016/0004-6981(75)90053-0
SEELEY, S. D., J. L. ANDERSON, J. W. FRISBY & M. G. WEEKS. 1996. Temperature characteristics of anthesis phenology of deciduous fruit trees. Acta Horticultivae 416: 56-63. https://doi.org/10.17660/ActaHortic.1996.416.6
SKJØTH, C. A., T. BECKER, P. V. ØRBY, C. GEELS, V. SCHLÜNSSEN, T. SIGSGAARD, J. H. BØNLØKKE, J. SOMMER, P. SØGAARD & O. HERTEL. 2010. Urban sources caused elevated grass pollen concentrations. Dissertation, 9th International Congress on Aerobiology. Buenos Aires.
SMITH, M. & J. EMBERLIN. 2006. A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int. J. Biometeorol. 50: 233–242. https://doi.org/10.1007/s00484-005-0010-y
SOLMAN, S. A. & C. G. MENÉNDEZ. 2002. ENSO-Related Variability of the Southern Hemisphere Winter Storm Track over the Eastern Pacific–Atlantic Sector. J. Atmos. Sci. 59: 2128–2141. https://doi.org/10.1175/1520-0469(2002)059<2128:ERVOTS>2.0.CO;2
STACH, A., J. EMBERLIN, M. SMITH, B. ADAMS-GROOM & D. MYSZKOWSKA. 2008. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Kraków) and the United Kingdom (Worcester and London). Int. J. Biometeorol. 52: 311–321. https://doi.org/10.1007/s00484-007-0127-2
THOMPSON, R. S., K. H. ANDERSON & P. J. BARTLEIN. 2000. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America — Hardwoods. U.S. Geological Survey Professional Paper 1650-B. U.S. Department of the Interior U.S. Geological Survey. https://doi.org/10.3133/pp1650C
VÁZQUEZ, L. M., C. GALÁN & E. DOMÍNGUEZ-VILCHES. 2003. Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). Int. J. Biometeorol. 48: 83–90. https://doi.org/10.1007/s00484-003-0187-x
VELASCO, I. & J. M. FRITSCH. 1987. Mesoscale convective complexes in the Americas. J. Geophys. Res. 92(D8): 9591- 9613. https://doi.org/10.1029/JD092iD08p09591
VOUKANTSIS, D., K. KARATZAS, S. JAEGER, U. BERGER & M. SMITH. 2013. Analysis and forecasting of airborne pollen-induced symptoms with the aid of computational intelligence methods. Aerobiologia 29: 175–185. https://doi.org/10.1007/s10453-012-9271-1
WILKS, D. S. 2011. Statistical methods in the atmospheric sciences. International Geophysics Series 100, 3rd ed. Elsevier Academic Press. Amsterdam, Boston, Heilderberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
ZALOM, F. G., P. B. GOODELL, L. T. WILSON, W. W. BARNETT & W. J. BENTLEY. 1983. Degree-days: the calculation and use of heat units in pest management. Leaflet No. 21373. pp 2 - 10. Division of Agriculture and Natural Resources. Berkeley CA, 94720: University of California.
ZHANG, Y., L. BIELORY, T. CAI, Z. MI & P. GEORGOPOULOS. 2015. Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos. Environ. 103: 297 – 306. https://doi.org/10.1016/j.atmosenv.2014.12.019
Additional Files
Published
Issue
Section
License
Copyright (c) 2021 Claudio Pérez, Mauro Covi, María Gassmann, Ana Ulke
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Provides immediate and free OPEN ACCESS to its content under the principle of making research freely available to the public, which fosters a greater exchange of global knowledge, allowing authors to maintain their copyright without restrictions.
Material published in Bol. Soc. Argent. Bot. is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.