Identifying authority structures in mathematics classroom discourse: a case of a teacher’s early experience in a new context
DOI:
https://doi.org/10.33044/revem.39919Keywords:
Mathematics teacher, Mathematics classroom, Conceptual frame, Language practice, Authority structureAbstract
We explore a conceptual frame for analyzing mathematics classroom discourse to understand the way authority is at work. This case study of a teacher moving from a school where he is known to a new setting offers us the opportunity to explore the use of the conceptual frame as a tool for understanding how language practice and authority relate in a mathematics classroom. This case study illuminates the challenges of establishing disciplinary authority in a new context while also developing the students’ sense of authority within the discipline. To analyze the communication in the teacher’s grade 12 class in the first school and grade 9 class early in the year at the new school, we use the four categories of positioning drawn from our earlier analysis of pervasive language patterns in mathematics classrooms—personal authority, discourse as authority, discursive inevitability, and personal latitude.
Downloads
References
Alrø, H., y Skovsmose, O. (2004). Dialogue and learning in mathematics education: Intention, reflection, critique (Vol. 29). Springer Science & Business Media.
Amit, M., y Fried, M. N. (2005). Authority and authority relations in mathematics education: A view from an 8th grade classroom. Educational studies in Mathematics, 58(2), 145–168.
Biber, D., Conrad, S., y Cortes, V. (2004). If you look at...: Lexical bundles in university teaching and textbooks. Applied linguistics, 25(3), 371–405.
Bishop, A. (2004). Mathematical enculturation. A cultural perspective on mathematics education. Dordrecht: D. Reidel Publishing Company.
Boaler, J. (2003). (Ed.). En Studying and capturing the complexity of practice—the case of the “dance of agency”: Proceedings of the 27 th Conference of the International Group for the Psychology of Mathematics Education held jointly with the 25th Conference of PME-NA, Honolulu, Hawaii (Vol. I) (pp. 3–16).
Cobb, P., Yackel, E., y Wood, T. (1993). Theoretical orientation. En D. Dillon (Ed.), Rethinking elementary school mathematics: Insights and issues, Monograph #6. NCTM: Reston, VA.
Herbel-Eisenmann, B. (2009). Negotiation of the “presence of the text”: How might teachers’ language choices influence the positioning of the textbook? En J. Remillard, B. Herbel-Eisenmann, y G. Lloyd (Eds.), Mathematics teachers at work: Connecting curriculum materials and classroom instruction (p. 134–151). New York: Routledge.
Herbel-Eisenmann, B., y Wagner, D. (2010). Appraising lexical bundles in mathematics classroom discourse: Obligation and choice. Educational Studies in Mathematics, 75(1), 43–63.
Herbel-Eisenmann, B., Wagner, D., y Cortes, V. (2010). Lexical bundle analysis in mathematics classroom discourse: The significance of stance. Educational Studies in Mathematics, 75(1), 23–42.
Hufferd-Ackles, K., Fuson, K. C., y Sherin, M. G. (2004). Describing levels and components of a
math-talk learning community. Journal for research in mathematics education, 35(2), 81.
Martin, J. R., y White, P. R. (2005). The language of evaluation: appraisal in English (Vol. 2). Nueva York: Palgrave.
Morgan, C. (1998). Writing mathematically: The discourse of ’investigation’. Bristol, PA: Falmer Press.
Oyler, C. (1996). Making Room for Students: Sharing Teacher Authority in Room 104. Nueva York: Teachers College Press.
Pace, J. L. (2003). Using ambiguity and entertainment to win compliance in a lower-level US history class. Journal of Curriculum Studies, 35(1), 83–110.
Pace, J. L., y Hemmings, A. (2007). Understanding authority in classrooms: A review of theory, ideology, and research. Review of educational research, 77(1), 4–27.
Pickering, A. (1995). The mangle of practice: Time, agency, and science. University of Chicago Press.
Pimm, D. (2019). Speaking mathematically. London: Routledge and Kegan Paul.
Rittenhouse, P. S. (1998). The teacher’s role in mathematical conversation: Stepping in and stepping out. En Lampert y Blunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 163–189). Nueva York: Cambridge University Press.
Roesken, B., Hannula, M. S., y Pehkonen, E. (2011). Dimensions of students’ views of themselves as learners of mathematics. ZDM, 43(4), 497–506.
Rowland, T. (1992). Pointing with pronouns. For the Learning of Mathematics, 12(2), 44–48.
Schoenfeld, A. (1992). Reflections on doing and teaching mathematics. En A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 53–70). Hillsdale, NJ: Erlbaum.
Skemp, R. R. (1980). Intelligence, learning and action. British Journal of Educational Studies, 28(3).
Skovsmose, O. (2001). Landscapes of investigation. Zentralblatt für Didaktik der Mathematik, 33(4), 123–132.
Wagner, D. (2012). Opening mathematics texts: Resisting the seduction. Educational Studies in Mathematics, 80(1), 153–169.
Wagner, D., y Herbel-Eisenmann, B. (2008). “Just don’t”: The suppression and invitation of dialogue in the mathematics classroom. Educational Studies in Mathematics, 67(2), 143–157.
Wagner, D., y Herbel-Eisenmann, B. (2009). Re-mythologizing mathematics through attention to classroom positioning. Educational Studies in Mathematics, 72(1), 1–15.
Yackel, E., y Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for research in mathematics education, 27(4), 458–477.
Yin, R. (2006). Case Study Methods. En J. Green, G. Camilli, y P. Elmore (Eds.), Handbook of Complementary Methods in Education Research (pp. 111–122). Mahwah, NJ: LEA & AERA.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0), que permite:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) después del proceso de publicación, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).