Variación de la evapotranspiración de referencia entre 1968 y 2018 en Córdoba (Argentina)bajo la influencia de la velocidad del viento y la amplitud térmica
Contenido principal del artículo
Resumen
Se analizó la diferencia entre la tasa diaria de evapotranspiración de referencia (ETo), que el método de Penman-Monteith (PM) calcula con el conjunto completo de variables meteorológicas y la obtenida utilizando solo registros térmicos y una velocidad superficial (u2) constante de 2 m s-1 (PMxn), empleando información meteorológica de las estaciones Río Cuarto Aero (RC), Marcos Juárez Aero (MJ), Pilar Observatorio (PI) y Villa Dolores Aero (VD) entre 1968 y 2018. La diferencia entre las tasas de ETo que resultan de PM y PMxn se incrementa de manera lineal con el aumento de u2, de modo que el empleo de PMxn debería estar restringido solo a lugares y días de menor u2. Los valores anuales de ETo obtenidos con ambos procedimientos exhiben una fluctuación entre 1968 y 2018, con valores decrecientes hasta la década de 1990, cuando la lluvia acusa registros máximos en la región; y crecientes desde entonces. Mientras la amplitud térmica (AT) en PI, MJ y RC muestra una fluctuación análoga a ETo, en MJ también u2 exhibe una fluctuación en fase con ETo, y en VD solo u2 presenta la variación de largo plazo concurrente a ETo. Únicamente RC mostró una tendencia lineal creciente de ETo.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Cómo citar
Referencias
Allen, R. G., Pereira, L. S., Raes, D. y Smith, M. (Eds.).(1998). Crop evapotranspiration: Guide-lines for computing crop water requirements - FAO Irrigation and Drain age Paper 56. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://www.fao.org/3/x0490e/x0490e00.htm#Contents
Almorox, J., Senatore, A., Quej, V.H. y Mendicino, G. (2016). Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration. Theoretical and Applied Climatology,131(1-2), 693-703. https://doi.org/10.1007/s00704-016-1996-2
Brutsaert, W. y Parlange, M. B. (1998). Hydrologic cycle explains the evaporation paradox. Nature,396, 30. https://doi.org/10.1007/s00704-016-1996-2
Chattopadhyay, N. y Hulme, M. (1997). Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology,87(1), 55–73.https://doi.org/10.1016/S0168-1923(97)00006-3
Chen, D., Gao, G., Xu, C.-Y, Guo, J. y Ren, G. Y. (2005). Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Climate Research, 28(2), 123–132. https://doi.org/10.3354/cr028123
Dai, A., Trenberth, K.E. y Karl, T.R. (1999). Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. Journal of Climate, 12(8), 2451–2473. https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
Dai, A., Karl, T. R., Sun, B. y Trenberth, K. E. (2006). Recent Trends in Cloudiness over the United States: A Tale of Monitoring Inadequacies. Bulletin of the American Meteorological Society, 87(5), 597-606. https://doi.org/10.1175/BAMS-87-5-597
D’Andrea, M. F., Rousseau, A. N., Bigah, Y., Gattinoni, N. N. y Brodeur, J. C. (2019). Trends in reference evapotranspiration and associated climate variables over the last 30 years (1984–2014) in the Pampa region of Argentina. Theoretical and Applied Climatology, 136 (3-4), 1371-1386. https://doi.org/10.1007/s00704-018-2565-7
de la Casa. A., Ovando, G. y Rodríguez, A. (2003). Estimación de la radiación solar global en la provincia de Córdoba, Argentina, y su empleo en un modelo de rendimiento potencial de papa. Revista de Investigaciones Agropecuarias, 32(2), 45–62. https://dialnet.unirioja.es/servlet/articulo?codigo=3995607
de la Casa, A. C. y Ovando, G. G. (2014). Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology,195–196, 1–11. https://doi.org/10.1016/j.agrformet.2014.04.005
de la Casa A. C. y Ovando, G. G. (2016). Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies,5, 66-79. https://doi.org/10.1016/j.ejrh.2015.11.009
de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2018). Secular variation of rainfall regime in the central region of Argentina. AtmosphericResearch, 213, 196–210. https://doi.org/10.1016/j.atmosres.2018.06.009
de la Casa, A. C., Ovando, G. G. y Díaz, G. J. (2020). Tendencias en la frecuencia, intensidad y variabilidad de la velocidad del viento en Córdoba, Argentina, entre 1968 y 2018. Revista Argentina de Agrometeorología, XI, 1-16. https://www.siteaada.org/_files/ugd/cf1a17_1c5b2216cdea49afa17745a270d63c50.pdf#page=10
Donohue, R. J., McVicar, T. R. y Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1–4), 186–197. https://doi.org/10.1016/j.jhydrol.2010.03.020
Golubev, V. S, Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne M. J., Peterson, T. C. y Malone, R. W. (2001). Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophysical Research Letters, 28(13), 2665–2668. https://doi.org/10.1029/2000GL012851
Goodin, D. G., Hutchinson, J. M. S., Vanderlip, R. L. y Knapp, M. C. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. Agronomy Journal, 91(5), 845-851. https://doi.org/10.2134/agronj1999.915845x
Guo, H., Xu, M. y Hu, Q. (2011). Changes in near-surface wind speed in China: 1969–2005. International Journal of Climatology, 31(3), 349–358. https://doi.org/10.1002/joc.2091
Hargreaves, G. H. y Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773
Hobbins, M. T., Ramírez, J. A. y Brown, T. C. (2004). Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophysical Research Letters, 31(13), L13503. https://doi.org/10.1029/2004GL019846
Irmak, S., Kabenge, I., Skaggs, K. E. y Mutiibwa, D. (2012). Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yrperiod in the Platte River Basin, Central Nebraska-USA. Journal of Hydrology,420–421, 228–244. https://doi.org/10.1016/j.jhydrol.2011.12.006
Land and Water Division of Food and Agriculture Organization of the United Nations (2009). The ETo Calculator (version 3.1.) [Software]. Food and Agriculture Organization of the United Nations.
Lawrimore, J. H. y Peterson, T. C. (2000). Pan Evaporation Trends in Dry and Humid Regions of the United States.Journal of Hydrometeorology, 1(6), 543–546. https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2
Liu, C. y Zeng, Y. (2004). Changes of Pan Evaporation in the Recent 40 Years in the Yellow River Basin. Water International, 29(4), 510–516. https://doi.org/10.1080/02508060408691814
McKenney, M. S. y Rosenberg, N. J. (1993). Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology,64(1-2), 81–110. https://doi.org/10.1016/0168-1923(93)90095-Y
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L.T., Van Niel, T. G., Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S. y Dinpashoh, Y. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416-417, 182-205. https://doi.org/10.1016/j.jhydrol.2011.10.024
Onyutha, C. (2016). Statistical analyses of potential evapotranspiration changes over the period 1930–2012 in the Nile River riparian countries. Agricultural and Forest Meteorology,226–227, 80–95. https://doi.org/10.1016/j.agrformet.2016.05.015
Paredes, P., Fontes, J. C., Azevedo, E. B. y Pereira, L. S. (2018). Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theoretical and Applied Climatology, 134(1), 595–611. https://doi.org/10.1007/s00704-017-2295-2
Raes, D. (2009). The ETo Calculator (version 3.1.).Reference Manual.Food and Agriculture Organization of the United Nations Ed.,38 pp.
Roderick, M. L. y Farquhar, G. D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298 (5597), 1410–1411. https://doi.org/10.1126/science.1075390-a
Roderick, M. L. y Farquhar, G. D. (2004). Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology, 24(9), 1077–1090. https://doi.org/10.1002/joc.1061
Romanić, D., Ćurić, M., Jovičić, I. y Lompar, M. (2015). Long-term trends of the 'Koshava' wind during the period 1949–2010. International Journal of Climatology, 35(2), 288–302. https://doi.org/10.1002/joc.3981
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
Theil, H. (1950). A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Proceedings of KoninklijkeNederlandseAkademie van Wetenschappen, 53(3-4), 386–392 (Part 1); 521–525 (Part 2); 1397–1412 (Part 3).
Thomas, A. (2000). Spatial and temporal characteristics of potential evapotranspiration trends over China. International Journal of Climatology,20(4), 381–396. https://doi.org/10.1002/(SICI)1097-0088(20000330)20:4<381::AID-JOC477>3.0.CO;2-K
Valipour, M. (2015). Temperature analysis of reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465
Vicente-Serrano, S. M., Bidegain, M., Tomas-Burguera, M., Dominguez-Castro, F., El Kenawy, A., McVicar, T. R., Azorin-Molina, C., López-Moreno, J. I., Nieto, R., Gimeno, L. y Giménez, A. (2017). A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). International Journal of Climatology, 38(1), 337-350. https://doi.org/10.1002/joc.5179
Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z. y Li, J.(2017). Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of. Hydrology, 544, 97-108. https://doi.org/10.1016/j.jhydrol.2016.11.021
Xu, C.-Y., Gong, L., Jiang, T., Chen, D. y Singh, V.P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327 (1–2), 81–93. https://doi.org/10.1016/j.jhydrol.2005.11.029