Effect of Adara-M2624 and other seven rootstocks on fruit damages and defects of two sweet cherry varieties

Main Article Content

Eduardo Tersoglio
Nancy Setien

Abstract

Rootstocks modify tree performance by adapting to different soil and climatic conditions. The experimental design was a randomized complete block design, with six replications. The percentage of damage was measured by the following components: cracked fruit, stemless fruit and mechanical damage. The percentage of defect was measured by the following components: spur fruit, double fruit and deep suture. The addition of damage and defect constituted the total loss. Climatic conditions, variety and rootstock influenced all variables. Rootstocks influenced the losses of Bing and Celeste varieties. The rootstocks that recorded the lowest loss and simultaneously, the lowest damage and defect were SL 64, MxM 60 and Weiroot 13, whereas CAB6P and Adara-Mariana 2624 reduced defects but increased damage. Both GiSeLa®5 and GiSeLa®6 reduced damage, although GiSeLa®5 increased defects. Rootstocks SL 64, MxM 60, Weirrot 13 and GiSeLa®6 reduced cracking, mechanical damage and suture; CAB6P and Adara-Mariana 2624 reduced suture and spur but increased cracking and mechanical damage; GiSeLa®5 reduced all three types of damage and increased all types of defects. Proper rootstock selection reduces losses.

Article Details

How to Cite
Effect of Adara-M2624 and other seven rootstocks on fruit damages and defects of two sweet cherry varieties. (2022). AgriScientia, 39(1). https://doi.org/10.31047/1668.298x.v39.n1.28816
Section
Articles
Author Biography

Eduardo Tersoglio, INTA Mendoza

Investigador en Fruticultura

How to Cite

Effect of Adara-M2624 and other seven rootstocks on fruit damages and defects of two sweet cherry varieties. (2022). AgriScientia, 39(1). https://doi.org/10.31047/1668.298x.v39.n1.28816

References

Ampatzidis, Y. y Whiting, M. (2013). Training system affects sweet cherry harvest efficiency. HortScience, 48(5), 547–555. https://doi.org/10.21273/HORTSCI.48.5.547

Anderson, A., Lindell, C., Moxcey, K., Siemer, W., Linz, G., Curtis, P., Carroll, J., Burrows, C., Boulanger, J., Steensma y K. and Shwiff, S. (2013). Bird damage to select fruit crops: The cost of damage and the benefits of control in five states. Crop Protection 52, 103-109. https://doi.org/10.1016/j.cropro.2013.05.019

Beppu, K. y Kataoka, I. (1999). High temperature rather than drought stress is responsible for the occurrence of double pistils in ‘Satohnishiki’ sweet cherry. Science Horticulturae, 81(2), 125–134. https://doi.org/10.1016/S0304-

4238%2899%2900007-2

Bound, S., Close, D., Quentin, A., Measham, P. y Whiting, M. (2013). Crop Load and Time of Thinning Interact to Affect Fruit Quality in Sweet Cherry. Journal of Agricultural Science, 5(8), 216-230. http://dx.doi.org/10.5539/jas.v5n8p216

Chiang, A., Schnettler, B., Mora, M. y Aguilera, M. (2018). Perceived quality of and satisfaction from sweet cherries (Prunus avium L.) in China: Confirming relationships through structural equations. Ciencia e investigación Agraria, 45(3), 210-219. http://dx.doi.org/10.7764/rcia.v45i3.1930

Centre Technique Interprofessionel des Fruits et Legumes (2005). Code du Couleur Cerise, (Éventail). Paris, Francia. Ref: 22006.

Correia, S., Schouten, R., Silva, A. P. y Gonçalves, B. (2018). Sweet cherry fruit cracking mechanisms and prevention strategies: A review.

Scientia Horticulturae, 240, 369–377. https://doi.org/10.1016/j.scienta.2018.06.042

Crisosto, C., Crisosto, G. y Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28(1), 159-167. http://dx.doi.org/10.1016/S0925-5214(02)00173-4

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. y Robledo, C. (2018). InfoStat (versión 2018) [Software]. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba.

Engin, H. y Ünal, A. (2008a). Double Fruit Formation and the Occurrence of Two Pistils: Examination by Scanning Electron Microscopy in

Sweet Cherry. Acta Horticulturae, 795, 651-654. https://doi.org/10.17660/ActaHortic.2008.795.101

Engin, H. y Ünal, A. (2008b). The Effect of Irrigation, Gibberellic Acid and Nitrogen on the Occurrence of Double Fruit in ‘Van’ Sweet Cherry. Acta Horticulturae, 795, 645-650. http://dx.doi.org/10.17660/ActaHortic.2008.795.100

Engin, H., en, F., Pamuk, G. y Gökbayrak, Z. (2009). Investigation of Physiological Disorders and Fruit Quality of Sweet Cherry. European Journal of Horticultural Science, 74(3), 118-123. https://www.pubhort.org/ejhs/2009/file_1034231.pdf

Fajt, N., Folini, L., Bassi, G. y Siegler, H. (2014). ‘Lapins’ on ten cherry rootstocks in the Alpe Adria Region. Acta Horticulturae, 1020, 371-376. https://doi.org/10.17660/ActaHortic.2014.1020.51

Gainza, F., Opazo, I., Guajardo, V., Meza, P., Ortiz, M., Pinochet, J.y Muñoz, C. (2015). Review: Rootstock breeding in Prunus species: Ongoing efforts and new challenges. Chilean Journal of Agricultural Research, 75(Suppl.1), 6-16. http://dx.doi.org/10.4067/S0718-58392015000300002

Grant, J., Caprile, J., Coates, W., Anderson, K., Klonsky, K. y De Moura, R. (2001). Sample costs to establish an orchard and produce sweet cherries. San Joaquin Valley-North.University of California Cooperative Extension. CH-VN-11.

Instituto Nacional de Tecnología Agropecuaria (2007). Tabla de Colores de cerezas. Guía para la aplicación de ácido giberélico y para el inicio de la cosecha de variedades rojas. Laboratorio de Fruticultura, Estación Experimental Agropecuaria Mendoza, INTA. Cooperadora E.E.A. Mendoza.

Hussein, Z., Fawole, O. A. y Opara, U. L. (2020). Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Horticultural Plant Journal, 6(1), 1–13. https://doi.org/10.1016/j.hpj.2019.07.006

InnovaChile (2010). Programa de difusión tecnológica en Cerezos. Fundación para el desarrollo frutícola. http://www.fdf.cl/biblioteca/

publicaciones/2010/archivos/Poster_Danos_Cerezas.pdf

Kappel, F. y Lang, G. (2008). Performance of the NC-140 Regional Sweet Cherry Rootstock Trial Planted in 1998 in North America. Acta

Horticulturae, 795, 317-320. https://doi.org/10.17660/ActaHortic.2008.795.45

Koumanov, K., Staneva, I., Kornov, G. D. y Germanova, D. (2018). Intensive sweet cherry production on dwarfing rootstocks revisited.

Scientia Horticulturae, 229, 193–200. https://www.researchgate.net/publication/322194047_Intensive_sweet_cherry_production_on_dwarfing_rootstocks_revisited

Ljubojevi, M., Ognjanov, V., Bara, G., Duli, J., Miodragovi, M., Sekuli, M. y Jovanovi, N. (2016). Cherry tree growth models for orchard management improvement. Turkish Journal of Agriculture and Forestry, 40, 839-854. https://doi.org/10.1016/j.scienta.2017.11.009

López-Ortega, G., García-Montiel, F., Bayo-Canhaa, A., Frutos-Ruiz, C. y Frutos-Tomás, D. (2016). Rootstock effects on the growth, yield

and fruit quality of sweet cherry cv. ‘Newstar’ in the growing conditions of the Region of Murcia. Scientia Horticulturae, 198, 326–335. https://doi.org/10.1016/j.scienta.2015.11.041

Lucero, G., Lucero, H. y Pizzuolo, P. (2015). Enfermedades que afectan al cerezo en Mendoza. En Tacchini, F. (Eds.), Producción y comercialización de cereza en Mendoza, Argentina (261-288). Fundación Instituto de Desarrollo Rural. https://www.idr.org.ar/wp-content/uploads/2015/07/Manual-de-Producci%C3%B3n-y-Comercializaci%C3%B3n-de-Cerezas-Mendoza-part-1.pdf

Martínez Palanca, J. y Vilardell Cordech, P. (2008). Evaluación de aplicaciones de TaloSint para favorecer la formación de russeting en la pera “Conference”. Phytohemeroteca 197. https://www.phytoma.com/la-revista/phytohemeroteca/197-marzo-2008/evaluacion-de-aplicaciones-de-talosint-para-favorecer-la-formacion-de-russeting-en-la-pera-conference

Measham, P., Bound, A., Gracie, J. y Wilson, S. (2009). Incidence and type of cracking in sweet cherry (Prunus avium L.) are affected by genotype and season. Crop Pasture Science, 60(10), 1002–1008. https://doi.org/10.1071/CP08410

Measham, P., Gracie, A., Wilson, S. y Bound, A. (2010). Vascular flow of water induces side cracking in sweet cherry (Prunus avium L.). Advances in Horticultural Science, 24(4), 243–248. http://dx.doi.org/10.1400/153230

Measham, P., Bound, S., Gracie, A. y Wilson, J. (2013). Crop load manipulation and fruit cracking in sweet cherry (Prunus avium L.). Advances in Horticultural Science, 26(1), 25-31. http://dx.doi.org/10.13128/ahs-12749

Measham, P., Wilson, S., Gracie, A. y Bound, S. (2014). Tree water relations: Flow and fruit. Agriculture Water Management, 137, 59–67. https://doi.org/10.1016/j.agwat.2014.02.005

Mendenhall, W. and Sincich, T. (1995). Statistics for engineering and the sciences (4th. ed.). Prentice Hall.

Michailidis, M., Karagiannis, E., Tanou, G., Sarrou, E., Karamanoli, K., Lazaridou, A., Martens, S. y Molassiotis, A. (2020). Sweet cherry fruit

cracking: follow-up testing methods and cultivar-metabolic screening. Plant Methods 16(1), 1-14. https://doi.org/10.1186/s13007-020-00593-6

Mertz, L. (2016). Saving cherries from the birds: New information provides help with bird management. Good Fruit Grower. https://www.goodfruit.com/saving-cherries-from-the-birds/

Neilsen, G., Neilsen, D., Kappel, F., Toivonen, P. y Herbert, L. (2010). Factors Affecting Establishment of Sweet Cherry on Gisela 6

Rootstock. HortScience, 45(6), 939–945. http://dx.doi.org/10.21273/HORTSCI.45.6.939

Olmstead, M. A., Lang, N. S., Lang, G. A., Ewers, F. W. y Owens, S. A. (2006). Examining the Vascular Pathway of Sweet Cherries Grafted onto Dwarfing Rootstocks. HortScience, 41(3), 674-679. http://dx.doi.org/10.21273/HORTSCI.41.3.674

Rana, R. L., Andriano, A. M., Giungato, P. y Tricase, C. (2019). Carbon footprint of processed sweet cherries (Prunus avium L.): From nursery to market. Journal of Cleaner Production, 227, 900-910. https://doi.org/10.1016/j.jclepro.2019.04.162

Sansavini, S. y Lugli, S. (2008). Sweet Cherry Breeding Programmes in Europe and Asia. Acta Horticulturae 795, 41-58. https://doi.org/10.17660/ActaHortic.2008.795.1

Sansavini, S. y Lugli, S. (2014). New rootstocks for intensive sweet cherry plantations. Acta Horticulturae, 1020, 317-320. https://doi.org/10.17660/ActaHortic.2014.1020.59

Schumann, C. y Knoche, M. (2020). Swelling of cell walls in mature sweet cherry fruit: factors and mechanisms. Planta 251(3), 1-16. https://doi.org/10.1007/s00425-020-03352-y

Simon, G., Hrotkó, K. y Magyar, L. (2004). Fruit quality of sweet cherry cultivars grafted on four different rootstocks. Acta Horticulturae,

658(1), 365–370. http://dx.doi.org/10.17660/ActaHortic.2004.658.53

Simon, G. (2006). Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of revention.

International Journal of Horticultural Science, 12(3), 27–35. http://dx.doi.org/10.31421/IJHS/12/3/654

Sønstebya, A. y Heide, O. M. (2019). Temperature effects on growth and floral initiation in sweet cherry (Prunus avium L.). Scientia

Horticulturae 257, 108762. https://doi.org/10.1016/j. scienta.2019.108762

Southwick, S. M., Shackel, K. A., Yeager J. T., D., Asai W. K. y Katacich, M. (1991). Over tree sprinkling reduces abnormal shapes in ‘Bing’

sweet cherries. California Agriculture 45(4), 24-26. http://dx.doi.org/10.3733/ca.v045n04p24

Southwick, S. y Uyemoto, J. (1999). Cherry crinkle-leaf and deep suture disorders. University of California. Agricultural and Natural Resources Publications.

Steiner, M., Magiar, L., Gyeviki, M. y Hrotkó, K. (2015). Optimization of light interception in intensive sweet cherry orchard. Scientific Papers. Serie B, Horticulture, 59, 105-108. http://horticulturejournal.usamv.ro/pdf/2015/art17.pdf

Wilkinson, L. (2002). TableCurve 2D (versión prueba) [Software]. SYSTAT Software Inc.

Tersoglio, E. y Naranjo, G. (2007). Características del frío invernal de las zonas productoras de cerezas de la provincia de Mendoza, Argentina. Parte I. Información Técnica Económica Agraria, 103(4), 186-197.

Tersoglio, E. y Setien, N. (2016). Efecto de la combinación Adara-M2624 y otros siete portainjertos sobre las características del dosel

de dos variedades de cerezo. Agriscientia, 33(2), 113-125. https://doi.org/10.31047/1668.298x.v33.n2.16578

Villar, L., Lienqueo, I., Llanes, A., Rojas, P., Perez, J., Correa, F., Sagredo, B., Masciarelli, O., Luna, V. y Almada, R. (2020). Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing). PLoS ONE, 15(3), e0230110. https://doi.org/10.1371/journal.pone.0230110

Winkler, A., Brüggenwirth, M., Ngo, N. S. y Knoche, M. (2016). Fruit apoplast tension drawsxylem water into mature sweet cherries. Scientia Horticulturae, 209, 270–278. http://dx.doi.org/10.1016/j.scienta.2016.06.041

Winkler A., Peschel, S., Kohrs, K. y Knoche, M. (2016). Rain Cracking in Sweet Cherries is not Due to Excess Water Uptake but to Localized Skin Phenomena. Journal of American Society Horticultural Science, 141(6), 653–660. http://dx.doi.org/10.21273/JASHS03937-16

Winkler, A. y Knoche, M. (2019). Calcium and the physiology of sweet cherries: A review. Scientia Horticulturae, 245, 107–115. https://doi.org/10.1016/j.scienta.2018.10.012

Winkler, A., Blumenberg, I., Schürmann, L. y Knoche, M. (2020). Rain cracking in sweet cherries is caused by surface wetness, not by water uptake. Scientia Horticulturae, 269, 109400. https://doi.org/10.1016/j.scienta.2020.109400

Wirch, J., Kappel, F. y Scheewe, P. (2009). The Effect of Cultivars, Rootstocks, Fruit Maturity and Gibberellic Acid on Pedicel Retention of Sweet Cherries (Prunus avium L.). Journal of American Pomological Society, 63(3), 108-114.

Wyman, O., Münch, R., Pöhl, A., Terreaux, G. y Torchalla, J. (2019). Fruit Logistica Trend Report 2019. Surprises in Store. Fruitnet Media International. https://www.oliverwyman.com/content/dam/oliver-wyman/v2-de/publications/2019/Februar/

FruitLogisticaTrendReport_2019_OliverWyman_EN.pdf