Evaluation and comparison of protein composition and quality in half-sib families of opaque-2 maize (Zea mays L.) from Argentina
Main Article Content
Abstract
The objective of this study was to characterize and compare the protein composition of half-sib families of opaque-2 maize from Argentina through progeny testing. Grain hardness, protein fractions, amino acid content and in vitro protein digestibility (PD) of whole grain flour were determined. Non-opaque genotypes were used as control. Total protein content of o2 genotypes correlated negatively with the grain hardness (r=-42 in 2012 and r=-0.32 in 2013) and did not show significant differences in relation to non-opaque genotypes; however, o2 genotypes showed significantly higher PD, lower zein proportion, and higher albumin, globulin and glutelin contents. The o2progenies showed significantly higher lysine content and higher levels of other essential amino acids, such as isoleucine and threonine compared to white corn. Lysine content, protein fraction contents and PD showed a higher contribution of genetic variance to the total variability, despite the high contribution of crop year variance obtained by total protein content. The differences shown by progeny protein profiles would enable the identification of o2 genotypes with lower zein level and higher lysine content; this allows us to continue the selection and improvement to obtain open-pollination varieties enhanced in terms of protein quality.
Article Details
How to Cite
References
AACC International (2010). Approved Methods of Analysis. 11th ed. Methods 08-01.01, 30-25.01, 44-19.01, 46-12.01. Retrieved from: https://methods.aaccnet.org/about.aspx
Acquaah, G. (2012). Principles of Plant Genetics and Breeding (2nd ed). Hoboken, USA: John Wiley & Sons Ltd.
Alaiz, M., Navarro, J. L., Girón, J. and Vioque, E. (1992). Amino acid analysis by high performance chromatography alter derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography A, 591, 181-186.
AOAC International. (1999). Official Methods of Analysis of the Association (16th ed.)5th Revision. (Method 994.13). Gaithersburg, USA: AOAC International.
Arendt, E. K. and Emanuele, Z. (2013). Cereal grains for the food and beverage industries.Cambridge, UK:Elsevier.
Arruda, P., Da-Silva, W. J. and Teixeira, J. P. (1978). Protein and free amino acids in a high lysine maize double mutant. Phytochemistry, 197, 1217-1218.
Beckles, D. M. and Thitisaksakul, M. (2014). How environmental stress affects starch composition and functionality in cereal endosperm. Starch, 66, 58–71.
Cázares-Sánchez, E., Chávez-Servia, J. L., Salinas-Moreno, Y., Castillo-
González, F. y Ramírez-Vallejo, P. (2015). Variación en la composición del grano entre poblaciones de maíz (Zea mays L.) nativas de Yucatán, México. Agrociencia, 49, 15-30.
Corcuera, V., Salmoral, E., Kandus, M., Ferrero, V., y Salerno, J. (2013). Análisis proximal del grano de los maíces de uso especial. I. Contenido de proteína, almidón y aceite. En Asociación Argentina de Tecnólogos Alimentarios (Ed.), XIV Congreso Argentino de Ciencia y Tecnología de Alimentos. Rosario, Argentina: Asociación Argentina de Tecnólogos Alimentarios. ISBN: 978-987-22165-5-9.
Corcuera, V., Salmoral, E., Pennisi, M., Kandus, M. y Salerno, J. (2016). Análisis composicional cuanti-cualitativo de los macronutrientes del grano de híbridos de maíz con valor mejorado (VEC) desarrollados para la industriaalimentaria argentina. Revista de Divulgación Técnica Agropecuaria, Agroindustrial y Ambiental Facultad de Ciencias Agrarias. UNLZ. 3 (2), 37-51.
Di Rienzo, J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. y Robledo C.W. InfoStat(versión 2018) [Software de cómputo]. Córdoba, Argentina, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina.
Di Rienzo, J. A., Macchiavelli, R. yCasanoves, F. (2017). Modelos Lineales Mixtos: Aplicaciones en InfoStat. Retrieved from: https://www.researchgate.net/publication/283491350_Modelos_lineales_mixtos_aplicaciones_en_InfoStat
Di Rienzo, J., Guzmán, A. and Casanoves, F. (2002). A multiple comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, 7, 1-14.
Dolfini, F. S., Landoni, M., Tonelli, C., Bernard, L. and Viotti, A. (1992). Spatial regulation in the expression of structural and regulatory storage protein genes in Zea mays endosperm. Genesis: Journal of Genetics and Development, 13, 264–276.
Dombrink-Kurtzman, M. A. and Bietz, J. A. (1993). Zein composition in hard and soft endosperm of maize. Cereal Chemistry, 70, 105-108.
Duodu, K. G., Nunes, A., Delgadillo, I., Parker, M. L., Mills, E. N., Belton, P. S. and Taylor, J. R. (2002). Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. Journal of Cereal Science, 35, 161–174.
Gayral, M., Gaillard, C., Bakan, B., Dalgalarrondo, M., Elmorjani, K., Delluc, C., Brunet, S., Linossier, L., Morel, M. H. and Marion, D. (2016). Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. Journal of Cereal Science, 68, 148-154.
Gibbon, B. and Larkins, B. (2005). Molecular genetic approaches to developing quality protein maize. Trends in Genetics, 21, 227-233.
Gunaratna, N. S., Groote, H., Nestel, P., Pixley, K. V. and McCabe, G. P. (2010). A meta-analysis of community-based studies on quality protein maize. Food Policy, 35, 202–210.
Habben, J. E., Kirleis, A.W. and Larkins, B.A. (1993). The origin of lysine containing proteins in opaque-2 maize endosperm. Plant Molecular Biology, 23, 825–838.
Hamaker, B. R., Kirleis, A. W., Butler, L. G., Axtell, J. D. and Mertz, E. T. (1987). Improving the in vitro protein digestibility of sorghum with reducing agents. Proceedings of the National Academy of Sciences of the United States of America, 84, 626-628.
Hamaker, B. R., Kirleis, A. W., Mertz, E. T. and Axtell, J. D. (1986). Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize. Journal of Agricultural and Food Chemistry, 34, 647–649.
Hoseney, C. R. (1994). Principles of Cereal Science and Technology (2nd ed).Minnesota,USA: AACC International.
Jia, M., Wu, H., Clay, K. L., Jung, R., Larkins, B. A. and Gibbon, B. C. (2013). Identification and characterization of lysine rich proteins and starch biosynthesis genes in the opaque-2 mutant by transcriptional and proteomic analysis. BMC Plant Biology, 13, 60-74.
Joshi, S., Lodha, M. L. and Mehta, S. L. (1980). Regulation of starch biosynthesis in normal and opaque-2 maize during endosperm development. Phytochemistry, 19, 2305-2309.
Krivanek, A. F., Groote, H., Gunaratna, N. S., Diallo, A. O and Friesen, D. (2007). Breeding and disseminating quality protein maize (QPM) for Africa. African Journal of Biotechnology, 6, 312-324.
Kriz, A. L. (2009). Enhancement of amino acid availability in corn grain. In:T. Nagata, H. Lörz and J.H. Widholm (Eds.), Molecular genetic approaches to maize improvement, Biotechnology in Agriculture and Forestry Series (79-89). Heidelberg/Berlin, Germany: Springer. doi:10.1007/978-3-540-68922-5_7
Kutka, F. (2011). Open-Pollinated vs. Hybrid Maize Cultivars.Sustainability, 3, 1531-1554.
Landry, J., Damerval, C., Azevedo, R. and Sonia, D. (2005). Effect of the opaque and floury mutations on the accumulation of dry matter and protein fractions in maize endosperm. Plant Physiology and Biochemistry, 43, 549–556.
Landry, J., Delhaye, S. and Damerval, C. (2004). Protein distribution pattern in floury and vitreous endosperm of maize grain. Cereal Chemistry, 81, 153–158.
Li, H. C., Liu, Y. B., Cheng, R. X., Sun, X. Z., Wang, Y., Tang, J. H. and Liu, Z. H. (2009). Inheritance effect of protein content in maize kernels and its relation to yield. ActaAgronomicaSinica, 35, 755–760.
Magoja, J. L. and Nivio, A. A. (1982) High-quality protein maize with normal genotype: Inheritance of lysine content. Mendeliana, 56,110-111.
Magoja, J. L., Nivio, A. A. and Streitenberger, M. E. (1984). High-quality protein maize with normal genotype: lysine content of selected inbreds. Mendeliana, 58, 121-122.
Malumba, P., Vanderghem, C., Deroanne, C. and Béra, F. (2008). Influence of drying temperature on the solubility, the purity of isolates and the electrophoretic patterns of corn proteins. Food Chemistry, 111, 564–572.
Mansilla, P. S., Nazar, M. C. and Pérez, G. T. (2017). Comparison of flour starch properties in half-sib families of opaque-2 maize (Zea mays L.) from Argentina. Cereal Chemistry, 94, 942-949.
Mendoza-Elos, M., Andrio-Enríquez, E., Juarez-Goiz, J. M., Mosqueda-Villagómez, C., Latournerie-Moreno, L., Castañón-Nájera, G., López-Benítez, A., y Moreno-Martínez, E. (2006). Contenido de lisina y triptófano en genotipos de alta calidad proteica y normal. Universidad y Ciencia, México, 22, 153-162.
Mertz, E. T., Bates, L. S. and Nelson, O. E. (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 145, 279–280.
Narváez-González, E. D., Figueroa-Cárdenas, J., Taba, S., Castaño-Tostado, E., Martínez-Peniche, R. A. and Rincón-Sánchez, F. (2006). Relationships between the microstructure, physical features, and chemical composition of different maize accessions from Latin America. Cereal Chemistry, 83, 595–604.
Ngaboyisonga, C., Njoroge, K., Kirubi, D. and Githiri, S. M. (2008). Effects of field conditions, low nitrogen and drought on genetic parameters of protein and tryptophan concentration in grain of quality protein maize. International Journal of Plant Production, 2, 137–152.
Ortiz-Martinez, M., Otero-Pappatheodorou, J. T., Serna-Saldívar, S. O. and García-Lara, S. (2017). Antioxidant activity and characterization of protein fractions and hydrolysates from normal and quality protein maize kernels. Journal of Cereal Science, 76, 85-91.
Pereira, R. C., Davide, L. C., Pedrozo, C. A., Carneiro, N. P., Souza, I. R. and Paiva, E. (2008). Relationship between structural and biochemical characteristics and texture of corn grains. Genetics and Molecular Research, 7, 498-508.
Prasanna, B. M., Vasal, S. K., Kassahun, B. and Singh, N. N. (2001). Quality protein maize. Current Science, 81, 1308-1319.
Rodriguez-Nogales, J. M., Garcia, M. C. and Marina, M. L. (2006). High-performance liquid chromatography and capillary electrophoresis for the analysis of maize proteins. Journal of SeparationScience, 29,197-210.
Rojas-Molina, I., Gutiérrez, E., Cortés-Acevedo, M. E., Falcón, A., Bressani, R., Rojas, A., Ibarra, C., Pons-Hernández, J. L., Guzmán-Maldonado, S. H., Cornejo-Villegas, A. and Rodríguez, M. E. (2008). Analysis of quality protein changes in nixtamalized QPM flours as a function of the steeping time. Cereal Chemistry, 85, 409–416.
Rossi, D. (2007).Evolución de los cultivares de maíz utilizados en la Argentina. Revista Agromensajes, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 22, 3-11.
Salinas, M. Y., Bustos, F. y Gomez, J. H. (1992). Comparación de métodos para medir la dureza del maíz (Zea mays L.). Archivos Latinoamericanos de Nutrición, 42, 59?63.
Scott, M. P., Edwards, J. W., Bell, C. P., Schussler, J. R. and Smith, J. S. (2006). Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica,51, 417-423.
Serna-Saldivar, S. O. (2010). Cereal Grains: Properties, Processing, and Nutritional Attributes. CRC Press: Boca Raton, FL, 796 pp.
Sofi, P. A., Wani, S. A., Rather, A. G. and Wani, S. H. (2009). Quality protein maize (QPM): Genetic manipulation for the nutritional fortification of maize. Journal of Plant Breeding and Crop Science, 1(6), 244-253.
Tang, J. H., Ji, H. Q., Liu, Y. B., Zhang, J., Tan, X., Hu, Y. M. and Liu, Z. H. (2011). Inheritance of lysine content in kernel and relationship between lysine content and yield in maize. ActaAgronomicaSinica, 37, 1585–1591.
Thitisaksakul, M., Jiménez, R. C., Arias, M. C. and Beckles, D. M. (2012). Effects of environmental factors on cereal starch biosynthesis and composition. Journal of Cereal Science, 56, 67-80.
Vera-Guzmán, A. M., Chávez-Servia, J. L. y Carrillo-Rodríguez, J. C. (2012). Proteína, lisina y triptófano en poblaciones nativas de maíz mixteco. Revista Fitotecnia Mexicana, 35, 7-13.
Vivek, B. S., Krivanek, A. F., Palacios-Rojas, N., Twumasi-Afriyie, S. y Diallo, A. O. (2008). Mejoramiento de maíz con calidad de proteína (QPM): Protocolos para generar variedades QPM. México, D.F., México: CIMMYT.
Wall, J. S. and Bietz, J. A. (1987). Differences in corn endosperm proteins in developing seeds of normal and opaque-2 corn. Cereal Chemistry, 64, 275-280.
Wall, J. S. and Paulis, J. W. (1978). Corn and sorghum grain proteins. Advances in cereal science and technology, 3, 135-219.
Wang, X. L., Woo, Y. M., Kim, C. S. and Larkins, B. A. (2001). Quantitative trait locus mapping of loci influencing elongation factor 1 alpha content in maize endosperm. Plant Physiology. 125, 1271-1282.
Waterborg, J. H. (2002). The Lowry Method for Protein Quantitation. In: J. M. Walker (Ed.), The Protein Protocols Handbook (7-9). Totowa, USA: Humana Press Inc.
Wegary, D., Labuschagne, M. T. and Vivek, B. S. (2011). Protein quality and endosperm modification of quality protein maize (Zea mays L.) under two contrasting soil nitrogen environments. Field Crops Research, 121, 408–415.
Wei, L. M., Dai, J. R. and Liu, Z. X. (2008). Genetic effects of grain protein, starch and oil contents in maize. Science Agriculture Sinica, 41, 3845–3850. (In Chinese).
Yau, J. C., Bockholt, A. J., Smith, J. D., Rooney, L. W. and Waniska, R. D. (1999). Maize endosperm proteins that contribute to endosperm lysine content. Cereal Chemistry, 76, 668–672.